跳轉至內容
Merck
  • Induced overexpression of OCT4A in human embryonic stem cells increases cloning efficiency.

Induced overexpression of OCT4A in human embryonic stem cells increases cloning efficiency.

American journal of physiology. Cell physiology (2014-03-15)
Steven C Tsai, David F Chang, Chang-Mu Hong, Ping Xia, Dinithi Senadheera, Lisa Trump, Suparna Mishra, Carolyn Lutzko
摘要

Our knowledge of the molecular mechanisms underlying human embryonic stem cell (hESC) self-renewal and differentiation is incomplete. The level of octamer-binding transcription factor 4 (Oct4), a critical regulator of pluripotency, is precisely controlled in mouse embryonic stem cells. However, studies of human OCT4 are often confounded by the presence of three isoforms and six expressed pseudogenes, which has complicated the interpretation of results. Using an inducible lentiviral overexpression and knockdown system to manipulate OCT4A above or below physiological levels, we specifically examine the functional role of the OCT4A isoform in hESC. (We also designed and generated a comparable series of vectors, which were not functional, for the overexpression and knockdown of OCT4B.) We show that specific knockdown of OCT4A results in hESC differentiation, as indicated by morphology changes, cell surface antigen expression, and upregulation of ectodermal genes. In contrast, inducible overexpression of OCT4A in hESC leads to a transient instability of the hESC phenotype, as indicated by changes in morphology, cell surface antigen expression, and transcriptional profile, that returns to baseline within 5 days. Interestingly, sustained expression of OCT4A past 5 days enhances hESC cloning efficiency, suggesting that higher levels of OCT4A can support self-renewal. Overall, our results indicate that high levels of OCT4A increase hESC cloning efficiency and do not induce differentiation (whereas OCT4B expression cannot be induced in hESC), highlighting the importance of isoform-specific studies in a stable and inducible expression system for human OCT4. Additionally, we demonstrate the utility of an efficient method for conditional gene expression in hESC.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
甲醇, suitable for HPLC, ≥99.9%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
甲醇, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
甲醇, HPLC Plus, ≥99.9%
Sigma-Aldrich
3-吗啉丙磺酸, ≥99.5% (titration)
Sigma-Aldrich
甲醇, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
甲醇, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
2-二(2-羟乙基)氨基-2-羟甲基-1,3-丙二醇, ≥98.0% (titration)
Sigma-Aldrich
3-吗啉丙磺酸, BioPerformance Certified, suitable for cell culture, ≥99.5% (titration)
Sigma-Aldrich
丁酸钠, 98%
Sigma-Aldrich
甲醇, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
甲醇, BioReagent, ≥99.93%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
甲醇, Absolute - Acetone free
SAFC
2-二(2-羟乙基)氨基-2-羟甲基-1,3-丙二醇
Sigma-Aldrich
3-吗啉丙磺酸, BioXtra, ≥99.5% (titration)
USP
木精, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
2-二(2-羟乙基)氨基-2-羟甲基-1,3-丙二醇, BioUltra, ≥99.0% (NT)
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
2-二(2-羟乙基)氨基-2-羟甲基-1,3-丙二醇, BioPerformance Certified, suitable for cell culture, suitable for insect cell culture, ≥98.0%
Sigma-Aldrich
甲醇, anhydrous, 99.8%
Sigma-Aldrich
2-二(2-羟乙基)氨基-2-羟甲基-1,3-丙二醇, BioXtra, ≥98.0% (titration)
Sigma-Aldrich
甲醇, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
SAFC
3-吗啉丙磺酸
SAFC
2-二(2-羟乙基)氨基-2-羟甲基-1,3-丙二醇
Sigma-Aldrich
丁酸钠, ≥98.5% (GC)
Supelco
甲醇, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
甲醇, analytical standard
Sigma-Aldrich
甲醇, NMR reference standard
Sigma-Aldrich
3-吗啉丙磺酸, anhydrous, free-flowing, Redi-Dri, ≥99.5%