跳轉至內容
Merck
  • Arginine deprivation and immune suppression in a mouse model of Alzheimer's disease.

Arginine deprivation and immune suppression in a mouse model of Alzheimer's disease.

The Journal of neuroscience : the official journal of the Society for Neuroscience (2015-04-17)
Matthew J Kan, Jennifer E Lee, Joan G Wilson, Angela L Everhart, Candice M Brown, Andrew N Hoofnagle, Marilyn Jansen, Michael P Vitek, Michael D Gunn, Carol A Colton
摘要

The pathogenesis of Alzheimer's disease (AD) is a critical unsolved question; and although recent studies have demonstrated a strong association between altered brain immune responses and disease progression, the mechanistic cause of neuronal dysfunction and death is unknown. We have previously described the unique CVN-AD mouse model of AD, in which immune-mediated nitric oxide is lowered to mimic human levels, resulting in a mouse model that demonstrates the cardinal features of AD, including amyloid deposition, hyperphosphorylated and aggregated tau, behavioral changes, and age-dependent hippocampal neuronal loss. Using this mouse model, we studied longitudinal changes in brain immunity in relation to neuronal loss and, contrary to the predominant view that AD pathology is driven by proinflammatory factors, we find that the pathology in CVN-AD mice is driven by local immune suppression. Areas of hippocampal neuronal death are associated with the presence of immunosuppressive CD11c(+) microglia and extracellular arginase, resulting in arginine catabolism and reduced levels of total brain arginine. Pharmacologic disruption of the arginine utilization pathway by an inhibitor of arginase and ornithine decarboxylase protected the mice from AD-like pathology and significantly decreased CD11c expression. Our findings strongly implicate local immune-mediated amino acid catabolism as a novel and potentially critical mechanism mediating the age-dependent and regional loss of neurons in humans with AD.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
氯化钾, ACS reagent, 99.0-100.5%
Sigma-Aldrich
甲酸, reagent grade, ≥95%
Sigma-Aldrich
甲酸, ACS reagent, ≥96%
Sigma-Aldrich
甲酸, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
氯化钾, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, E508, 99-100.5% (AT), ≤0.0001% Al
Sigma-Aldrich
氯化钾, for molecular biology, ≥99.0%
Sigma-Aldrich
氯化钾, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99.0%
Sigma-Aldrich
甲酸, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
氯化钾, ReagentPlus®, ≥99.0%
Sigma-Aldrich
L-精氨酸, from non-animal source, meets EP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
甲酸, ACS reagent, ≥88%
Sigma-Aldrich
氯化钾 溶液, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
氯化钾, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99%
Sigma-Aldrich
氯化钾, puriss. p.a., ≥99.5% (AT)
Sigma-Aldrich
氯化钾, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
L-瓜氨酸, ≥98% (TLC)
SAFC
L-精氨酸
Sigma-Aldrich
氯化钾, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99%
Sigma-Aldrich
氮气, ≥99.998%
Sigma-Aldrich
氯化钾, 99.999% trace metals basis
Sigma-Aldrich
Aphidicolin from Nigrospora sphaerica, ≥98% (HPLC), powder
Sigma-Aldrich
L-精氨酸, 99%, FCC, FG
Sigma-Aldrich
甲酸, ≥95%, FCC, FG
Sigma-Aldrich
L-精氨酸, reagent grade, ≥98%
Sigma-Aldrich
氯化钾, ≥99.99% trace metals basis
Supelco
氯化钾 溶液, for Ag/AgCl electrodes, ~3 M KCl, saturated with silver chloride
Sigma-Aldrich
氯化钾, BioXtra, ≥99.0%
Sigma-Aldrich
L-精氨酸, BioUltra, ≥99.5% (NT)
Supelco
氯化钾, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
甲酸 溶液, BioUltra, 1.0 M in H2O