跳轉至內容
Merck
  • Dual oxidase 2 in lung epithelia is essential for hyperoxia-induced acute lung injury in mice.

Dual oxidase 2 in lung epithelia is essential for hyperoxia-induced acute lung injury in mice.

Antioxidants & redox signaling (2014-04-29)
Min-Ji Kim, Jae-Chan Ryu, Younghee Kwon, Suhee Lee, Yun Soo Bae, Joo-Heon Yoon, Ji-Hwan Ryu
摘要

Acute lung injury (ALI) induced by excessive hyperoxia has been employed as a model of oxidative stress imitating acute respiratory distress syndrome. Under hyperoxic conditions, overloading quantities of reactive oxygen species (ROS) are generated in both lung epithelial and endothelial cells, leading to ALI. Some NADPH oxidase (NOX) family enzymes are responsible for hyperoxia-induced ROS generation in lung epithelial and endothelial cells. However, the molecular mechanisms of ROS production in type II alveolar epithelial cells (AECs) and ALI induced by hyperoxia are poorly understood. In this study, we show that dual oxidase 2 (DUOX2) is a key NOX enzyme that affects hyperoxia-induced ROS production, particularly in type II AECs, leading to lung injury. In DUOX2 mutant mice (DUOX2(thyd/thyd)) or mice in which DUOX2 expression is knocked down in the lungs, hyperoxia-induced ALI was significantly lower than in wild-type (WT) mice. DUOX2 was mainly expressed in type II AECs, but not endothelial cells, and hyperoxia-induced ROS production was markedly reduced in primary type II AECs isolated from DUOX2(thyd/thyd) mice. Furthermore, DUOX2-generated ROS are responsible for caspase-mediated cell death, inducing ERK and JNK phophorylation in type II AECs. To date, no role for DUOX2 has been defined in hyperoxia-mediated ALI despite it being a NOX homologue and major ROS source in lung epithelium. Here, we present the novel finding that DUOX2-generated ROS induce AEC death, leading to hyperoxia-induced lung injury.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
过氧化氢 溶液, contains inhibitor, 30 wt. % in H2O, ACS reagent
Sigma-Aldrich
过氧化氢 溶液, 30 % (w/w) in H2O, contains stabilizer
Sigma-Aldrich
过氧化氢 溶液, 50 wt. % in H2O, stabilized
Sigma-Aldrich
过氧化氢溶液, 30% (w/w), puriss. p.a., reag. ISO, reag. Ph. Eur.
Sigma-Aldrich
荧光素, for fluorescence, free acid
Sigma-Aldrich
过氧化氢 溶液, contains inhibitor, 35 wt. % in H2O
Sigma-Aldrich
过氧化氢 溶液, contains ~200 ppm acetanilide as stabilizer, 3 wt. % in H2O
Sigma-Aldrich
过氧化氢 溶液, purum p.a., ≥35% (RT)
Millipore
过氧化氢 溶液, 3%, suitable for microbiology
Sigma-Aldrich
过氧化氢 溶液, 34.5-36.5%
Sigma-Aldrich
过氧化氢 溶液, contains inhibitor, 30 wt. % in H2O, meets USP testing specifications
Supelco
过氧化氢 溶液, for inorganic trace analysis, for trace analysis, ≥30%
Supelco
过氧化氢 溶液, 30 % (w/w), for inorganic trace analysis, for ultratrace analysis
Sigma-Aldrich
过氧化氢 溶液, tested according to Ph. Eur.
荧光素, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
过氧化氢 溶液, contains potassium stannate as inhibitor, 30-32 wt. % in water, semiconductor grade, 99.999% trace metals basis