跳轉至內容
Merck
  • Imipramine ameliorates pain-related negative emotion via induction of brain-derived neurotrophic factor.

Imipramine ameliorates pain-related negative emotion via induction of brain-derived neurotrophic factor.

Cellular and molecular neurobiology (2014-08-27)
Seiko Yasuda, Mitsuhiro Yoshida, Hirotaka Yamagata, Yasutake Iwanaga, Hiromi Suenaga, Kozo Ishikawa, Masako Nakano, Satoshi Okuyama, Yoshiko Furukawa, Shoei Furukawa, Toshizo Ishikawa
摘要

Depression-like behavior is often complicated by chronic pain. Antidepressants including imipramine (IMI) are widely used to treat chronic pain, but the mechanisms are not fully understood. Brain-derived neurotrophic factor (BDNF) is a neuromodulator that reduces depression by regulating synaptic transmission. We aimed to characterize the antidepressant effects of IMI without analgesia based on BDNF (trkB)-mediated signaling and gene expression in chronic pain. A chronic constriction injury (CCI) model was constructed in Sprague-Dawley (SD) rats. IMI (5 mg/kg, i.p.) was administered from day 10 after CCI. The pain response was assessed using the paw withdrawal latency (PWL) and depression was judged from the immobility time in a forced swim test. Anti-BDNF antibody, K252a, or 5,7-dihydroxytryptamine (5,7-DHT) were used to examine the antidepressant effects of imipramine. Changes in pERK1/2 (immunohistochemistry), 5-HT and BDNF (ELISA), and BDNF mRNA (RT-PCR) were measured in the anterior cingulate cortex (ACC), rostral ventromedial medulla (RVM), and spinal cord. After CCI, rats showed decreased PWL and increased immobility time. A low dose of IMI reduced the immobility time without having analgesic effects. This antidepressant effect was reversed by anti-BDNF antibody, K252a, and 5,7-DHT. IMI reduced excessive activation of pERK1/2 associated with decreased pCREB and BDNF mRNA, and these changes were reversed by 5,7-DHT. These results show that IMI reduces pain-related negative emotion without influencing pain and that this effect is diminished by denervation of 5-HT neurons and by anti-BDNF treatment. IMI also normalizes derangement of ERK/CREB coupling, which leads to induction of BDNF. This suggests a possible interaction between 5-HT and BDNF.