跳轉至內容
Merck
  • One of two chondrocyte-expressed isoforms of cartilage intermediate-layer protein functions as an insulin-like growth factor 1 antagonist.

One of two chondrocyte-expressed isoforms of cartilage intermediate-layer protein functions as an insulin-like growth factor 1 antagonist.

Arthritis and rheumatism (2003-05-15)
Kristen Johnson, David Farley, Shou-Ih Hu, Robert Terkeltaub
摘要

Aging and osteoarthritic (OA) cartilage commonly demonstrate enhanced expression of the large, transforming growth factor beta (TGFbeta)-inducible glycoprotein cartilage intermediate-layer protein (CILP) as well as enhanced extracellular inorganic pyrophosphate (PPi) that promotes the deposition of calcium pyrophosphate dihydrate crystals. In normal chondrocytes, TGFbeta induces elevated chondrocyte extracellular PPi. Insulin-like growth factor 1 (IGF-1) normally blocks this response and reduces extracellular PPi. However, chondrocyte resistance to IGF-1 is observed in OA and aging. Because CILP was reported to chromatographically fractionate with PPi-generating nucleotide pyrophosphatase phosphodiesterase (NPP) activity, it has been broadly assumed that CILP itself has NPP activity. Our objective was to directly define CILP functions and their relationship to IGF-1 in chondrocytes. Using primary cultures of articular chondrocytes from the knee, we defined the function of the previously described CILP (CILP-1) and of a recently described 50.6% identical protein that we designated the CILP-2 isoform. Both CILP isoforms were constitutively expressed by primary cultured articular chondrocytes, but only CILP-1 expression was detectable in cultured knee meniscal cartilage cells. Neither CILP isoform had intrinsic NPP activity. But CILP-1 blocked the ability of IGF-1 to decrease extracellular PPi, an activity specific for the CILP-1 N-terminal domain. The CILP-1 N-terminal domain also suppressed IGF-1-induced (but not TGFbeta-induced) proliferation and sulfated proteoglycan synthesis, and it inhibited ligand-induced IGF-1 receptor autophosphorylation. Two CILP isoforms are differentially expressed by chondrocytes. Neither CILP isoform exhibits PPi-generating NPP activity. But, increased expression of CILP-1, via N-terminal domain-mediated inhibitory effects of CILP-1 on chondrocyte IGF-1 responsiveness, could impair chondrocyte growth and matrix repair and indirectly promote PPi supersaturation in aging and OA cartilage.