跳轉至內容
Merck

Enzymatic degradation of glycosaminoglycans.

Critical reviews in biochemistry and molecular biology (1995-01-01)
S Ernst, R Langer, C L Cooney, R Sasisekharan
摘要

Glycosaminoglycans (GAGs) play an intricate role in the extracellular matrix (ECM), not only as soluble components and polyelectrolytes, but also by specific interactions with growth factors and other transient components of the ECM. Modifications of GAG chains, such as isomerization, sulfation, and acetylation, generate the chemical specificity of GAGs. GAGs can be depolymerized enzymatically either by eliminative cleavage with lyases (EC 4.2.2.-) or by hydrolytic cleavage with hydrolases (EC 3.2.1.-). Often, these enzymes are specific for residues in the polysaccharide chain with certain modifications. As such, the enzymes can serve as tools for studying the physiological effect of residue modifications and as models at the molecular level of protein-GAG recognition. This review examines the structure of the substrates, the properties of enzymatic degradation, and the enzyme substrate-interactions at a molecular level. The primary structure of several GAGs is organized macroscopically by segregation into alternating blocks of specific sulfation patterns and microscopically by formation of oligosaccharide sequences with specific binding functions. Among GAGs, considerable dermatan sulfate, heparin and heparan sulfate show conformational flexibility in solution. They elicit sequence-specific interactions with enzymes that degrade them, as well as with other proteins, however, the effect of conformational flexibility on protein-GAG interactions is not clear. Recent findings have established empirical rules of substrate specificity and elucidated molecular mechanisms of enzyme-substrate interactions for enzymes that degrade GAGs. Here we propose that local formation of polysaccharide secondary structure is determined by the immediate sequence environment within the GAG polymer, and that this secondary structure, in turn, governs the binding and catalytic interactions between proteins and GAGs.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
肝素酶 I 和 III 混合物 来源于肝素黄杆菌, lyophilized powder, stabilized with ∼ 25% (w/w) bovine serum albumin, ≥200 unit/mg protein (enzyme + BSA)