跳轉至內容
Merck
  • Molecular mechanisms of boron transport in plants: involvement of Arabidopsis NIP5;1 and NIP6;1.

Molecular mechanisms of boron transport in plants: involvement of Arabidopsis NIP5;1 and NIP6;1.

Advances in experimental medicine and biology (2010-07-30)
Kyoko Miwa, Mayuki Tanaka, Takehiro Kamiya, Toru Fujiwara
摘要

Understanding of the molecular mechanisms of boron (B) transport has been greatly advanced in the last decade. BOR1, the first B transporter in living systems, was identified by forward genetics using Arabidopsis mutants. Genes similar to BOR1 have been reported to share different physiological roles in plants. NIPS;1, a member of aquaporins in Arabidopsis, was then identified as a boric acid channel gene responsible for the B uptake into roots. NIP6;1, the most similar gene to NIPS;1, encodes a B channel essential for B distribution to young leaves. In the present chapter, recent advancement of the understanding of molecular mechanisms of B transport and roles of NIP genes are discussed.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
硼, ≥95% (boron), amorphous powder
Sigma-Aldrich
硼, crystalline, 1 cm, 99.7% trace metals basis
Sigma-Aldrich
硼, crystalline, −60 mesh, 99% trace metals basis