跳轉至內容
Merck

Microglial response to gold nanoparticles.

ACS nano (2010-03-25)
Eliza Hutter, Sebastien Boridy, Simon Labrecque, Melanie Lalancette-Hébert, Jasna Kriz, Françoise M Winnik, Dusica Maysinger
摘要

Given the emergence of nanotherapeutics and nanodiagnostics as key tools in today's medicine, it has become of critical importance to define precisely the interactions of nanomaterials with biological systems and to characterize the resulting cellular response. We report here the interactions of microglia and neurons with gold nanoparticles (GNPs) of three morphologies, spheres, rods, and urchins, coated with poly(ethylene glycol) (PEG) or cetyl trimethylammonium bromide (CTAB). Microglia are the resident immune cells of the brain, primarily involved in surveillance, macrophagy, and production of cytokines and trophic factors. Analysis by dark-field microscopy and by two-photon-induced luminescence (TPL) indicates that the exposure of neural cells to GNPs resulted in (i) GNP internalization by both microglial cells and primary hippocampal neurons, as revealed by dark-field microscopy and by two-photon-induced luminescence (TPL), (ii) transient toll-like receptor 2 (TLR-2) up-regulation in the olfactory bulb, after intranasal administration in transgenic mice, in vivo, in real time, and (iii) differential up-regulation in vitro of TLR-2 together with interleukin 1 alpha (IL-1alpha), granulocyte macrophage colony-stimulating factor (GM-CSF) and nitric oxide (NO) in microglia. The study demonstrates that GNP morphology and surface chemistry strongly influence the microglial activation status and suggests that interactions between GNPs and microglia can be differentially regulated by tuning GNP nanogeometry.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
Gold nano-urchins, 100 nm avg. part. size, in 0.1 mM PBS
Sigma-Aldrich
Gold nano-urchins, 80 nm avg. part. size, in 0.1 mM PBS
Sigma-Aldrich
Gold nano-urchins, 90 nm avg. part. size, in 0.1 mM PBS