跳轉至內容
Merck

Regulation of gene expression by biotin (review).

The Journal of nutritional biochemistry (2003-12-24)
Rocio Rodriguez-Melendez, Janos Zempleni
摘要

In mammals, biotin serves as coenzyme for four carboxylases, which play essential roles in the metabolism of glucose, amino acids, and fatty acids. Biotin deficiency causes decreased rates of cell proliferation, impaired immune function, and abnormal fetal development. Evidence is accumulating that biotin also plays an important role in regulating gene expression, mediating some of the effects of biotin in cell biology and fetal development. DNA microarray studies and other gene expression studies have suggested that biotin affects transcription of genes encoding cytokines and their receptors, oncogenes, genes involved in glucose metabolism, and genes that play a role in cellular biotin homeostasis. In addition, evidence has been provided that biotin affects expression of the asialoglycoprotein receptor and propionyl-CoA carboxylase at the post-transcriptional level. Various pathways have been identified by which biotin might affect gene expression: activation of soluble guanylate cyclase by biotinyl-AMP, nuclear translocation of NF-kappaB (in response to biotin deficiency), and remodeling of chromatin by biotinylation of histones. Some biotin metabolites that cannot serve as coenzymes for carboxylases can mimic biotin with regard to its effects on gene expression. This observation suggests that biotin metabolites that have been considered "metabolic waste" in previous studies might have biotin-like activities. These new insights into biotin-dependent gene expression are likely to lead to a better understanding of roles for biotin in cell biology and fetal development.