跳轉至內容
Merck
  • Engineering filamentous fungi for conversion of D-galacturonic acid to L-galactonic acid.

Engineering filamentous fungi for conversion of D-galacturonic acid to L-galactonic acid.

Applied and environmental microbiology (2012-10-09)
Joosu Kuivanen, Dominik Mojzita, Yanming Wang, Satu Hilditch, Merja Penttilä, Peter Richard, Marilyn G Wiebe
摘要

D-Galacturonic acid, the main monomer of pectin, is an attractive substrate for bioconversions, since pectin-rich biomass is abundantly available and pectin is easily hydrolyzed. l-Galactonic acid is an intermediate in the eukaryotic pathway for d-galacturonic acid catabolism, but extracellular accumulation of l-galactonic acid has not been reported. By deleting the gene encoding l-galactonic acid dehydratase (lgd1 or gaaB) in two filamentous fungi, strains were obtained that converted d-galacturonic acid to l-galactonic acid. Both Trichoderma reesei Δlgd1 and Aspergillus niger ΔgaaB strains produced l-galactonate at yields of 0.6 to 0.9 g per g of substrate consumed. Although T. reesei Δlgd1 could produce l-galactonate at pH 5.5, a lower pH was necessary for A. niger ΔgaaB. Provision of a cosubstrate improved the production rate and titer in both strains. Intracellular accumulation of l-galactonate (40 to 70 mg g biomass(-1)) suggested that export may be limiting. Deletion of the l-galactonate dehydratase from A. niger was found to delay induction of d-galacturonate reductase and overexpression of the reductase improved initial production rates. Deletion of the l-galactonate dehydratase from A. niger also delayed or prevented induction of the putative d-galacturonate transporter An14g04280. In addition, A. niger ΔgaaB produced l-galactonate from polygalacturonate as efficiently as from the monomer.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
D-半乳糖醛酸 钠盐, ≥95.0% (T)