跳轉至內容
Merck
  • Inactivation of MuxABC-OpmB transporter system in Pseudomonas aeruginosa leads to increased ampicillin and carbenicillin resistance and decreased virulence.

Inactivation of MuxABC-OpmB transporter system in Pseudomonas aeruginosa leads to increased ampicillin and carbenicillin resistance and decreased virulence.

Journal of microbiology (Seoul, Korea) (2011-03-04)
Liang Yang, Lin Chen, Lixin Shen, Michael Surette, Kangmin Duan
摘要

Resistance-Nodulation-Cell Division (RND) pumps play important roles in bacterial resistance to antibiotics. Pseudomonas aeruginosa is an important human pathogen which exhibits high level resistance to antibiotics. There are total of 12 RND pumps present in the P. aeruginosa PAOl genome. The recently characterized MuxABC-OpmB system has been shown to play a role in resistance to novobiocin, aztreonam, macrolides, and tetracycline in a multiple knockout mutation. In this study, we examined the expression levels of all the 12 RND pump gene clusters and tested the involvement of MuxABC-OpmB in pathogenicity. The results indicated that in addition to the four known constitutively expressed RND pumps, mexAB-oprM, mexGHI-opmD, mexVW, and mexXY, relatively high levels of expression were observed with mexJK and muxABC-opmB in the conditions tested. Inactivation of muxA in the muxABC-opmB operon resulted in elevated resistance to ampicillin and carbenicillin. The mutant also showed attenuated virulence in both Brassica rapa pekinensis and Drosophila melanogaster infection models. The decreased virulence at least in part was due to decreased twitching motility in the mutant. These results indicate that the RND pump MuxABC-OpmB is associated with ampicillin and carbenicillin susceptibility and also involved in pathogenesis in P. aeruginosa.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
羧苄青霉素 二钠盐, BioReagent, suitable for plant cell culture
Sigma-Aldrich
羧苄青霉素 二钠盐, 89.0-100.5% anhydrous basis
Sigma-Aldrich
羧苄青霉素 二钠, meets USP testing specifications