跳轉至內容
Merck
  • Temperature dependence of nitrate reductase in the psychrophilic unicellular alga Koliella antarctica and the mesophilic alga Chlorella sorokiniana.

Temperature dependence of nitrate reductase in the psychrophilic unicellular alga Koliella antarctica and the mesophilic alga Chlorella sorokiniana.

Plant, cell & environment (2006-11-04)
Vittoria Martino di Rigano, Vincenza Vona, Ornella Lobosco, Petronia Carillo, John E Lunn, Simona Carfagna, Sergio Esposito, Marianna Caiazzo, Carmelo Rigano
摘要

Temperature responses of nitrate reductase (NR) were studied in the psychrophilic unicellular alga, Koliella antarctica, and in the mesophilic species, Chlorella sorokiniana. Enzymes from both species were purified to near homogeneity by Blue Sepharose (Pharmacia, Uppsala, Sweden) affinity chromatography and high-resolution anion-exchange chromatography (MonoQ; Pharmacia; Uppsala, Sweden). Both enzymes have a subunit molecular mass of 100 kDa, and K. antarctica NR has a native molecular mass of 367 kDa. NR from K. antarctica used both NADPH and NADH, whereas NR from C. sorokiniana used NADH only. Both NRs used reduced methyl viologen (MVH) or benzyl viologen (BVH). In crude extracts, maximal NADH and MVH-dependent activities of cryophilic NR were found at 15 and 35 degrees C, respectively, and retained 77 and 62% of maximal activity, respectively, at 10 degrees C. Maximal NADH and MVH-dependent activities of mesophilic NR, however, were found at 25 and 45 degrees C, respectively, with only 33 and 23% of maximal activities being retained at 10 degrees C. In presence of 2 microM flavin adenine dinucleotide (FAD), activities of cryophilic NADH:NR and mesophilic NADH:NR were stable up to 25 and 35 degrees C, respectively. Arrhenius plots constructed with cryophilic and mesophilic MVH:NR rate constants, in both presence or absence of FAD, showed break points at 15 and 25 degrees C, respectively. Essentially, similar results were obtained for purified enzymes and for activities measured in crude extracts. Factors by which the rate increases by raising temperature 10 degrees C (Q10) and apparent activation energy (E(a)) values for NADH and MVH activities measured in enzyme preparations without added FAD differed slightly from those measured with FAD. Overall thermal features of the NADH and MVH activities of the cryophilic NR, including optimal temperatures, heat inactivation (with/without added FAD) and break-point temperature in Arrhenius plots, are all shifted by about 10 degrees C towards lower temperatures than those of the mesophilic enzyme. Transfer of electrons from NADH to nitrate occurs via all three redox centres within NR molecule, whereas transfer from MVH requires Mo-pterin prosthetic group only; therefore, our results strongly suggest that structural modification(s) for cold adaptation affect thermodynamic properties of each of the functional domains within NR holoenzyme in equal measure.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
Nitrate Reductase from Arabidopsis thaliana, vial of ≥0.5 unit