跳轉至內容
Merck
  • Heme Synthesis Inhibition Blocks Angiogenesis via Mitochondrial Dysfunction.

Heme Synthesis Inhibition Blocks Angiogenesis via Mitochondrial Dysfunction.

iScience (2020-08-07)
Trupti Shetty, Kamakshi Sishtla, Bomina Park, Matthew J Repass, Timothy W Corson
摘要

The relationship between heme metabolism and angiogenesis is poorly understood. The final synthesis of heme occurs in mitochondria, where ferrochelatase (FECH) inserts Fe2+ into protoporphyrin IX to produce proto-heme IX. We previously showed that FECH inhibition is antiangiogenic in human retinal microvascular endothelial cells (HRECs) and in animal models of ocular neovascularization. In the present study, we sought to understand the mechanism of how FECH and thus heme is involved in endothelial cell function. Mitochondria in endothelial cells had several defects in function after heme inhibition. FECH loss changed the shape and mass of mitochondria and led to significant oxidative stress. Oxidative phosphorylation and mitochondrial Complex IV were decreased in HRECs and in murine retina ex vivo after heme depletion. Supplementation with heme partially rescued phenotypes of FECH blockade. These findings provide an unexpected link between mitochondrial heme metabolism and angiogenesis.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
总蛋白提取细胞裂解缓冲液
Sigma-Aldrich
氯化高铁血红素, from bovine, ≥90%
Sigma-Aldrich
原卟啉 IX, ≥95%
Sigma-Aldrich
JC-1, powder or solid (Crystals)
Sigma-Aldrich
4,6-二氧庚酸, powder