- Br-DIF-1 accelerates dimethyl sulphoxide-induced differentiation of P19CL6 embryonic carcinoma cells into cardiomyocytes.
Br-DIF-1 accelerates dimethyl sulphoxide-induced differentiation of P19CL6 embryonic carcinoma cells into cardiomyocytes.
Stem cell transplantation therapy is a promising option for treatment of severe ischaemic heart disease. Dimethyl sulphoxide (DMSO) differentiates P19CL6 embryonic carcinoma cells into cardiomyocyte-like cells, but with low differentiation capacity. To improve the degree of this differentiation, we have assessed several derivatives of the differentiation-inducing factor-1 (DIF-1), originally found in the cellular slime mould Dictyostelium discoideum, on P19CL6 cells. P19CL6 cells were cultured with each derivative and 1% DMSO for up to 16 days. Differentiation was assessed by measuring the number of beating and non-beating aggregates, and the expression of genes relevant to cardiac tissue. The mechanism of action was investigated using a T-type Ca(2+) channel blocker. Of all the DIF-1 derivatives tested only Br-DIF-1 showed any effects on cardiomyocyte differentiation. In the presence of 1% DMSO, Br-DIF-1 (0.3-3 µM) significantly and dose-dependently increased the number of spontaneously beating aggregates compared with 1% DMSO alone, by day 16. Expression of mRNA for T-type calcium channels was significantly increased by Br-DIF-1 + 1% DMSO compared with 1% DMSO alone. Mibefradil (a T-type Ca(2+) channel blocker; 100 nM) and a small interfering RNA for the T-type Ca(2+) channel both significantly decreased the beating rate of aggregates induced by Br-DIF-1 + 1% DMSO. Br-DIF-1 accelerated the differentiation, induced by 1% DMSO, of P19CL6 cells into spontaneously beating cardiomyocyte-like cells, partly by enhancing the expression of the T-type Ca(2+) channel gene.