跳轉至內容
Merck
  • Activating transcription factor 3 coordinates differentiation of cardiac and hematopoietic progenitors by regulating glucose metabolism.

Activating transcription factor 3 coordinates differentiation of cardiac and hematopoietic progenitors by regulating glucose metabolism.

Science advances (2020-06-05)
Hui-Min Yin, Li-Feng Yan, Qian Liu, Zheng Peng, Chi-Yuan Zhang, Yu Xia, Dan Su, Ai-Hua Gu, Yong Zhou
摘要

The cardiac and hematopoietic progenitors (CPs and HPs, respectively) in the mesoderm ultimately form a well-organized circulation system, but mechanisms that reconcile their development remain elusive. We found that activating transcription factor 3 (atf3) was highly expressed in the CPs, HPs, and mesoderm, in zebrafish. The atf3-/- mutants exhibited atrial dilated cardiomyopathy and a high ratio of immature myeloid cells. These manifestations were primarily caused by the blockade of differentiation of both CPs and HPs within the anterior lateral plate mesoderm. Mechanistically, Atf3 targets cebpγ to repress slc2a1a-mediated glucose utilization. The high rate of glucose metabolism in atf3-/- mutants inhibited the differentiation of progenitors by changing the redox state. Therefore, atf3 could provide CPs and HPs with metabolic adaptive capacity to changes in glucose levels. Our study provides new insights into the role of atf3 in the coordination of differentiation of CPs and HPs by regulating glucose metabolism.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
抗-α-微管蛋白抗体,小鼠单克隆, clone DM1A, purified from hybridoma cell culture
Sigma-Aldrich
抗 ATF3 兔抗, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
过氧化氢酶 来源于人类红细胞, ≥90% (SDS-PAGE), buffered aqueous solution, ≥30,000 units/mg protein
Sigma-Aldrich
JB-4包埋试剂盒
Sigma-Aldrich
STF-31, ≥98% (HPLC)