跳轉至內容
Merck
  • Vacuum-assisted headspace sorptive extraction: Theoretical considerations and proof-of-concept extraction of polycyclic aromatic hydrocarbons from water samples.

Vacuum-assisted headspace sorptive extraction: Theoretical considerations and proof-of-concept extraction of polycyclic aromatic hydrocarbons from water samples.

Analytica chimica acta (2019-12-31)
Nicoleta Solomou, Carlo Bicchi, Barbara Sgorbini, Elefteria Psillakis
摘要

The use of a thick sorbent coating in headspace sorptive extraction (HSSE) increases the amount of analytes extracted at equilibrium as well as the time needed to reach it. In this work we propose HSSE sampling under vacuum conditions to reduce equilibration times. A theoretical model is presented that describes the pressure dependence of the so-called vacuum-assisted HSSE (Vac-HSSE) method, and predicts the reduction in equilibration times when lowering the sampling pressure. We take advantage of the theoretical formulation to reach some general conclusions for HSSE on the relationship between the physical characteristics of the stir bar, uptake rates and equilibration times. The theoretical predictions were experimentally verified using water solutions spiked with naphthalene, acenaphthene and fluoranthene as model compounds. The effects of sampling temperature and extraction time under vacuum and regular pressure conditions were thoroughly investigated. The positive combined effect of heating the sample under low sampling pressure pointed that high humidity did not affect the performance of the extraction phase; an effect commonly recorded in headspace solid-phase microextraction. The extraction time profiles built at 25 and 55 °C visualized the substantial improvement in extraction kinetics with Vac-HSSE compared to the regular HSSE method. The results on naphthalene (assumed to evaporate relatively fast from the water sample) provided evidence that at 1 atm gas-sided resistance limited analyte uptake by the stir-bar and that this limitation could be effectively reduced by adopting the vacuum sampling approach. The accelerations of acenaphthene and fluoranthene suggested that gas-phase constraints limited both the evaporation and analyte uptake processes. Independent method optimization of HSSE under each pressure condition yielded a shorter sampling time for Vac-HSSE compared to the regular HSSE procedure (30 min vs. 60 min respectively). The analytical performances of the two optimized methods were evaluated and it was concluded that Vac-HSSE was performing similar (naphthalene and acenaphthene) or better (fluoranthene) than regular HSSE in half the sampling time needed.

材料
產品編號
品牌
產品描述

聚苯乙烯乳胶珠, 0.1 μm mean particle size