跳轉至內容
Merck
  • Dynein-2 intermediate chains play crucial but distinct roles in primary cilia formation and function.

Dynein-2 intermediate chains play crucial but distinct roles in primary cilia formation and function.

eLife (2018-10-16)
Laura Vuolo, Nicola L Stevenson, Kate J Heesom, David J Stephens
摘要

The dynein-2 microtubule motor is the retrograde motor for intraflagellar transport. Mutations in dynein-2 components cause skeletal ciliopathies, notably Jeune syndrome. Dynein-2 contains a heterodimer of two non-identical intermediate chains, WDR34 and WDR60. Here, we use knockout cell lines to demonstrate that each intermediate chain has a distinct role in cilium function. Using quantitative proteomics, we show that WDR34 KO cells can assemble a dynein-2 motor complex that binds IFT proteins yet fails to extend an axoneme, indicating complex function is stalled. In contrast, WDR60 KO cells do extend axonemes but show reduced assembly of dynein-2 and binding to IFT proteins. Both proteins are required to maintain a functional transition zone and for efficient bidirectional intraflagellar transport. Our results indicate that the subunit asymmetry within the dynein-2 complex is matched with a functional asymmetry between the dynein-2 intermediate chains. Furthermore, this work reveals that loss of function of dynein-2 leads to defects in transition zone architecture, as well as intraflagellar transport.

材料
產品編號
品牌
產品描述

Millipore
单克隆抗-HA−琼脂糖 小鼠抗, clone HA-7, purified immunoglobulin, PBS suspension
Sigma-Aldrich
乙酰化微管蛋白单克隆抗体 小鼠抗, clone 6-11B-1, ascites fluid
Sigma-Aldrich
抗动力蛋白抗体,74 kDa 中间链,细胞质,克隆 74.1, clone 74.1, Chemicon®, from mouse