跳轉至內容
Merck
  • ΔNp63 Inhibits Oxidative Stress-Induced Cell Death, Including Ferroptosis, and Cooperates with the BCL-2 Family to Promote Clonogenic Survival.

ΔNp63 Inhibits Oxidative Stress-Induced Cell Death, Including Ferroptosis, and Cooperates with the BCL-2 Family to Promote Clonogenic Survival.

Cell reports (2017-12-07)
Gary X Wang, Ho-Chou Tu, Yiyu Dong, Anders Jacobsen Skanderup, Yufeng Wang, Shugaku Takeda, Yogesh Tengarai Ganesan, Song Han, Han Liu, James J Hsieh, Emily H Cheng
摘要

The BCL-2 family proteins are central regulators of apoptosis. However, cells deficient for BAX and BAK or overexpressing BCL-2 still succumb to oxidative stress upon DNA damage or matrix detachment. Here, we show that ΔNp63α overexpression protects cells from oxidative stress induced by oxidants, DNA damage, anoikis, or ferroptosis-inducing agents. Conversely, ΔNp63α deficiency increases oxidative stress. Mechanistically, ΔNp63α orchestrates redox homeostasis through transcriptional control of glutathione biogenesis, utilization, and regeneration. Analysis of a lung squamous cell carcinoma dataset from The Cancer Genome Atlas (TCGA) reveals that TP63 amplification/overexpression upregulates the glutathione metabolism pathway in primary human tumors. Strikingly, overexpression of ΔNp63α promotes clonogenic survival of p53-/-Bax-/-Bak-/- cells against DNA damage. Furthermore, co-expression of BCL-2 and ΔNp63α confers clonogenic survival against matrix detachment, disrupts the luminal clearance of mammary acini, and promotes cancer metastasis. Our findings highlight the need for a simultaneous blockade of apoptosis and oxidative stress to promote long-term cellular well-being.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
抗 β-肌动蛋白抗体,小鼠单克隆, clone AC-15, purified from hybridoma cell culture
Sigma-Aldrich
抗层粘连蛋白-5(γ2链)抗体,克隆D4B5, clone D4B5, Chemicon®, from mouse