Skip to Content
Merck
  • Immunization with malondialdehyde-modified low-density lipoprotein (LDL) reduces atherosclerosis in LDL receptor-deficient mice challenged with Porphyromonas gingivalis.

Immunization with malondialdehyde-modified low-density lipoprotein (LDL) reduces atherosclerosis in LDL receptor-deficient mice challenged with Porphyromonas gingivalis.

Innate immunity (2014-08-20)
S Pauliina Turunen, Outi Kummu, Chunguang Wang, Kirsi Harila, Riikka Mattila, Marjo Sahlman, Pirkko J Pussinen, Sohvi Hörkkö
ABSTRACT

Periodontal infections increase the risk of atherosclerotic vascular disease via partly unresolved mechanisms. Of the natural IgM Abs that recognize molecular mimicry on bacterial epitopes and modified lipid and protein structures, IgM directed against oxidized low-density lipoprotein (LDL) is associated with atheroprotective properties. Here, the effect of natural immune responses to malondialdehyde-modified LDL (MDA-LDL) in conferring protection against atherosclerosis, which was accelerated by the major periodontopathogen Porphyromonas gingivalis, was investigated. LDL receptor-deficient (LDLR(-/-)) mice were immunized with mouse MDA-LDL without adjuvant before topical application challenge with live P. gingivalis. Atherosclerosis was analyzed after a high-fat diet, and plasma IgG and IgM Ab levels were measured throughout the study, and the secretion of IL-5, IL-10 and IFN-γ in splenocytes stimulated with MDA-LDL was determined. LDLR(-/-) mice immunized with MDA-LDL had elevated IgM and IgG levels to MDA-LDL compared with saline-treated controls. MDA-LDL immunization diminished aortic lipid depositions after challenge with P. gingivalis compared with mice receiving only P. gingivalis challenge. Immunization of LDLR(-/-) mice with homologous MDA-LDL stimulated the production of IL-5, implicating general activation of B-1 cells. Immune responses to MDA-LDL protected from the P. gingivalis-accelerated atherosclerosis. Thus, the linkage between bacterial infectious burden and atherogenesis is suggested to be modulated via natural IgM directed against cross-reactive epitopes on bacteria and modified LDL.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Cholesterol, tested according to Ph. Eur.
Sigma-Aldrich
Cholesterol, powder, BioReagent, suitable for cell culture, ≥99%
Sigma-Aldrich
Cholesterol, from sheep wool, ≥92.5% (GC), powder
Sigma-Aldrich
Cholesterol, Sigma Grade, ≥99%
Sigma-Aldrich
Cholesterol, from lanolin, ≥99.0% (GC)
Sigma-Aldrich
SyntheChol® NS0 Supplement, 500 ×, synthetic cholesterol, animal component-free, sterile-filtered, aqueous solution, suitable for cell culture
SAFC
Cholesterol, Plant-Derived, SyntheChol®
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
Anti-Mouse IgG (Fc specific)–Alkaline Phosphatase antibody produced in goat, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Anti-Mouse IgG (γ-chain specific) antibody produced in goat, affinity isolated antibody, lyophilized powder
Sigma-Aldrich
4,4′-Diaminodiphenylmethane, ≥97.0% (GC)
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Supelco
Cholesterol solution, certified reference material, 10 mg/mL in chloroform
SAFC
Cholesterol, from sheep wool, Controlled origin, meets USP/NF testing specifications
Sigma-Aldrich
HEPES, Vetec, reagent grade, 99.5%
SAFC
HEPES
SAFC
HEPES
Supelco
4,4′-Diaminodiphenylmethane, analytical standard
Supelco
HEPES, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%
Supelco
Cholesterol, Pharmaceutical Secondary Standard; Certified Reference Material