- Analytical procedure for the simultaneous voltammetric determination of trace metals in food and environmental matrices. Critical comparison with atomic absorption spectroscopic measurements.
Analytical procedure for the simultaneous voltammetric determination of trace metals in food and environmental matrices. Critical comparison with atomic absorption spectroscopic measurements.
An analytical procedure fit for the simultaneous determination of copper (II), chromium(VI), thallium(I), lead(II), tin(II), antimony(III), and zinc(II) by square wave anodic stripping voltammetry (SWASV) in three interdependent environmental matrices involved in foods and food chain as meals, cereal plants and soils is described. The digestion of each matrix was carried out using a concentrated HCl-HNO3-H2SO4 (meals and cereal plants) and HCl-HNO3 (soils) acidic attack mixtures. 0.1 mol/L dibasic ammonium citrate pH 8.5 was employed as the supporting electrolyte. The voltammetric measurements were carried out using, as working electrode, a stationary hanging mercury drop electrode (HMDE) and a platinum electrode and an Ag/AgCl/KClsat electrode as auxiliary and reference electrodes, respectively. The analytical procedure was verified by the analyses of the standard reference materials: Wholemeal BCR-CRM 189, Tomato Leaves NIST-SRM 1573a and Montana Soil Moderately Elevated Traces NIST-SRM 2711. For all the elements in the certified matrix, the precision as repeatability, expressed as relative standard deviation (Sr %) was lower than 5%. The accuracy, expressed as percentage relative error (e %) was of the order of 3-7%, while the detection limits were in the range 0.015-0.103 microg/g. Once set up on the standard reference materials, the analytical procedure was transferred and applied to commercial meal samples, cereal plants and soils samples drawn in sites devoted to agricultural practice. A critical comparison with spectroscopic measurements is also discussed.