Skip to Content
Merck
  • Dietary Supplementation With Eicosapentaenoic Acid Inhibits Plasma Cell Differentiation and Attenuates Lupus Autoimmunity.

Dietary Supplementation With Eicosapentaenoic Acid Inhibits Plasma Cell Differentiation and Attenuates Lupus Autoimmunity.

Frontiers in immunology (2021-07-03)
Azusa Kobayashi, Ayaka Ito, Ibuki Shirakawa, Atsushi Tamura, Susumu Tomono, Hideo Shindou, Per Niklas Hedde, Miyako Tanaka, Naotake Tsuboi, Takuji Ishimoto, Sachiko Akashi-Takamura, Shoichi Maruyama, Takayoshi Suganami
ABSTRACT

Accumulating evidence suggests that cholesterol accumulation in leukocytes is causally associated with the development of autoimmune diseases. However, the mechanism by which fatty acid composition influences autoimmune responses remains unclear. To determine whether the fatty acid composition of diet modulates leukocyte function and the development of systemic lupus erythematosus, we examined the effect of eicosapentaenoic acid (EPA) on the pathology of lupus in drug-induced and spontaneous mouse models. We found that dietary EPA supplementation ameliorated representative lupus manifestations, including autoantibody production and immunocomplex deposition in the kidneys. A combination of lipidomic and membrane dynamics analyses revealed that EPA remodels the lipid composition and fluidity of B cell membranes, thereby preventing B cell differentiation into autoantibody-producing plasma cells. These results highlight a previously unrecognized mechanism by which fatty acid composition affects B cell differentiation into autoantibody-producing plasma cells during autoimmunity, and imply that EPA supplementation may be beneficial for therapy of lupus.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
cis-5,8,11,14,17-Eicosapentaenoic acid sodium salt, ≥99% (capillary GC)
Sigma-Aldrich
Palmitic acid, BioXtra, ≥99%