Skip to Content
Merck
  • Ubiquitin-proteasome-mediated cyclin C degradation promotes cell survival following nitrogen starvation.

Ubiquitin-proteasome-mediated cyclin C degradation promotes cell survival following nitrogen starvation.

Molecular biology of the cell (2020-03-12)
Stephen D Willis, Sara E Hanley, Thomas Beishke, Prasanna D Tati, Katrina F Cooper
ABSTRACT

Environmental stress elicits well-orchestrated programs that either restore cellular homeostasis or induce cell death depending on the insult. Nutrient starvation triggers the autophagic pathway that requires the induction of several Autophagy (ATG) genes. Cyclin C-cyclin-dependent kinase (Cdk8) is a component of the RNA polymerase II Mediator complex that predominantly represses the transcription of stress-responsive genes in yeast. To relieve this repression following oxidative stress, cyclin C translocates to the mitochondria where it induces organelle fragmentation and promotes cell death prior to its destruction by the ubiquitin-proteasome system (UPS). Here we report that cyclin C-Cdk8, together with the Ume6-Rpd3 histone deacetylase complex, represses the essential autophagy gene ATG8. Similar to oxidative stress, cyclin C is destroyed by the UPS following nitrogen starvation. Removing this repression is important as deleting CNC1 allows enhanced cell growth under mild starvation. However, unlike oxidative stress, cyclin C is destroyed prior to its cytoplasmic translocation. This is important as targeting cyclin C to the mitochondria induces both mitochondrial fragmentation and cell death following nitrogen starvation. These results indicate that cyclin C destruction pathways are fine tuned depending on the stress and that its terminal subcellular address influences the decision between initiating cell death or cell survival pathways.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Phloxine B, Dye content ≥80 %, certified by the Biological Stain Commission
Sigma-Aldrich
Phloxine B, antibacterial fluorescent dye
Sigma-Aldrich
Boron-11B, 95 atom % 11B
Sigma-Aldrich
Doxycycline hyclate