Skip to Content
Merck
  • RNase L Reprograms Translation by Widespread mRNA Turnover Escaped by Antiviral mRNAs.

RNase L Reprograms Translation by Widespread mRNA Turnover Escaped by Antiviral mRNAs.

Molecular cell (2019-09-09)
James M Burke, Stephanie L Moon, Tyler Matheny, Roy Parker
ABSTRACT

In response to foreign and endogenous double-stranded RNA (dsRNA), protein kinase R (PKR) and ribonuclease L (RNase L) reprogram translation in mammalian cells. PKR inhibits translation initiation through eIF2α phosphorylation, which triggers stress granule (SG) formation and promotes translation of stress responsive mRNAs. The mechanisms of RNase L-driven translation repression, its contribution to SG assembly, and its regulation of dsRNA stress-induced mRNAs are unknown. We demonstrate that RNase L drives translational shut-off in response to dsRNA by promoting widespread turnover of mRNAs. This alters stress granule assembly and reprograms translation by allowing translation of mRNAs resistant to RNase L degradation, including numerous antiviral mRNAs such as interferon (IFN)-β. Individual cells differentially activate dsRNA responses revealing variation that can affect cellular outcomes. This identifies bulk mRNA degradation and the resistance of antiviral mRNAs as the mechanism by which RNase L reprograms translation in response to dsRNA.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Blasticidine S hydrochloride
Sigma-Aldrich
Monoclonal ANTI-FLAG® M2 antibody produced in mouse, 1 mg/mL, clone M2, affinity isolated antibody, buffered aqueous solution (50% glycerol, 10 mM sodium phosphate, and 150 mM NaCl, pH 7.4)
Sigma-Aldrich
Anti-Puromycin Antibody, clone 12D10, clone 12D10, from mouse