Skip to Content
Merck
  • Tripeptidyl Peptidase II Mediates Levels of Nuclear Phosphorylated ERK1 and ERK2.

Tripeptidyl Peptidase II Mediates Levels of Nuclear Phosphorylated ERK1 and ERK2.

Molecular & cellular proteomics : MCP (2015-06-05)
Anne Wiemhoefer, Anita Stargardt, Wouter A van der Linden, Maria C Renner, Ronald E van Kesteren, Jan Stap, Marcel A Raspe, Birgitta Tomkinson, Helmut W Kessels, Huib Ovaa, Herman S Overkleeft, Bogdan Florea, Eric A Reits
ABSTRACT

Tripeptidyl peptidase II (TPP2) is a serine peptidase involved in various biological processes, including antigen processing, cell growth, DNA repair, and neuropeptide mediated signaling. The underlying mechanisms of how a peptidase can influence this multitude of processes still remain unknown. We identified rapid proteomic changes in neuroblastoma cells following selective TPP2 inhibition using the known reversible inhibitor butabindide, as well as a new, more potent, and irreversible peptide phosphonate inhibitor. Our data show that TPP2 inhibition indirectly but rapidly decreases the levels of active, di-phosphorylated extracellular signal-regulated kinase 1 (ERK1) and ERK2 in the nucleus, thereby down-regulating signal transduction downstream of growth factors and mitogenic stimuli. We conclude that TPP2 mediates many important cellular functions by controlling ERK1 and ERK2 phosphorylation. For instance, we show that TPP2 inhibition of neurons in the hippocampus leads to an excessive strengthening of synapses, indicating that TPP2 activity is crucial for normal brain function.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-TPP2 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
Anti-SOX11 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
Monoclonal Anti-MAP Kinase, Activated (Diphosphorylated ERK-1&2) antibody produced in mouse, clone MAPK-YT, ascites fluid