Skip to Content
Merck
  • Development and validation of an HPTLC method for apigenin 7-O-glucoside in chamomile flowers and its application for fingerprint discrimination of chamomile-like materials.

Development and validation of an HPTLC method for apigenin 7-O-glucoside in chamomile flowers and its application for fingerprint discrimination of chamomile-like materials.

Journal of pharmaceutical and biomedical analysis (2015-01-13)
Etil Guzelmeric, Irena Vovk, Erdem Yesilada
ABSTRACT

Brewed tea of chamomile flowers (Matricaria recutita L.) (Asteraceae) has been extensively consumed for centuries due to either its pleasant taste or medicinal purposes. On the other hand, the major problem is difficulty in distinguishing the genuine specimen when supplying chamomile through nature-picking. Consequently flowers of other Asteraceae members resembling to chamomile in appearance may frequently be practiced by lay people or marketed in spice shops or bazaars. Evidently detection of such adulterations plays a vital role in terms of public health to avoid risk of toxicity (i.e. pyrazolidin alkaloids) and ineffective treatments (lack or insufficient concentration of the active constituents). This work presents either development and validation of a high performance thin-layer chromatographic (HPTLC) method for apigenin 7-O-glucoside which is one of the active markers in chamomile flowers or its application for the fingerprint discrimination of chamomile-like materials i.e. Anthemis spp., Bellis spp., Chrysanthemum sp. and Tanacetum sp. gathered by local people assuming as chamomile. Separation was performed on the silica gel 60 NH2 F254s HPTLC plates using the developing solvent system of ethyl acetate-formic acid-acetic acid-water (30:1.5:1.5:3, v/v/v/v). The proposed HPTLC method may also be a leading guide for the quality assessment of chamomile tea products on the market.

MATERIALS
Product Number
Brand
Product Description

USP
Methyl alcohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Ethyl acetate
Sigma-Aldrich
Ethyl acetate
Sigma-Aldrich
2-Propanol, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Hexane, ReagentPlus®, ≥99%
Sigma-Aldrich
2-Butanone, ACS reagent, ≥99.0%
Sigma-Aldrich
Dichloromethane, ACS reagent, ≥99.5%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Ethanol, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 2% 2-butanone, A15 MEK1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 4.8% isopropanol, A15 IPA1, ≥99.8% (based on denaturant-free substance)
USP
2-Propanol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Isopropyl alcohol, meets USP testing specifications
Sigma-Aldrich
Formic acid, ACS reagent, ≥96%
Sigma-Aldrich
Dichloromethane, puriss., meets analytical specification of Ph. Eur., NF, ≥99% (GC)
Sigma-Aldrich
Dichloromethane, biotech. grade, 99.9%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
2-Butanone, ACS reagent, ≥99.0%
Sigma-Aldrich
Ethyl acetate, biotech. grade, ≥99.8%
Sigma-Aldrich
2-Propanol, puriss. p.a., ACS reagent, ≥99.8% (GC)
Sigma-Aldrich
Formic acid, ACS reagent, ≥88%
Sigma-Aldrich
Hexane, Laboratory Reagent, ≥95%
Sigma-Aldrich
Ethyl acetate, puriss., meets analytical specification of Ph. Eur., BP, NF, ≥99.5% (GC)
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, for molecular biology
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, for molecular biology
Sigma-Aldrich
2-Butanone, suitable for HPLC, ≥99.7%
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.9%
Sigma-Aldrich
Dichloromethane, suitable for HPLC, ≥99.8%, contains amylene as stabilizer
Sigma-Aldrich
Ethyl acetate, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
Ethyl acetate, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Hexane, suitable for HPLC, ≥95%
Sigma-Aldrich
Hexane, suitable for HPLC, ≥97.0% (GC)