Skip to Content
Merck
  • Synthesis of bioinspired collagen/alginate/fibrin based hydrogels for soft tissue engineering.

Synthesis of bioinspired collagen/alginate/fibrin based hydrogels for soft tissue engineering.

Materials science & engineering. C, Materials for biological applications (2018-07-24)
G Montalbano, S Toumpaniari, A Popov, P Duan, J Chen, K Dalgarno, W E Scott, A M Ferreira
ABSTRACT

Hydrogels based on natural polymers offer a range of properties to mimic the native extracellular matrix, and provide microenvironments to preserve cellular function and encourage tissue formation. A tri-component hydrogel using collagen, alginate and fibrin (CAF) was developed and investigated at three collagen concentrations for application as a functional extracellular matrix analogue. Physical-chemical characterization of CAF hydrogels demonstrated a thermo-responsive crosslinking capacity at physiological conditions with stiffness similar to native soft tissues. CAF hydrogels were also assessed for cytocompatibility using L929 murine fibroblasts, pancreatic MIN6 β-cells and human mesenchymal stem cells (hMSCs); and demonstrated good cell viability, proliferation and metabolic activity after 7 days of in vitro culture. CAF hydrogels, especially with 2.5% w/v collagen, increased alkaline phosphatase production in hMSCs indicating potential for the promotion of osteogenic activity. Moreover, CAF hydrogels also increased metabolic activity of MIN6 β-cells and promoted the reconstitution of spherical pseudoislets with sizes ranging between 50 and 150 μm at day 7, demonstrating potential in diabetic therapeutic applications.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Alginic acid sodium salt from brown algae, low viscosity
Sigma-Aldrich
Fibrinogen from bovine plasma, Type I-S, 65-85% protein (≥75% of protein is clottable)
Sigma-Aldrich
Acetic acid, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Thrombin from bovine plasma, lyophilized powder, 40-300 NIH units/mg protein (biuret)