Skip to Content
Merck
  • Silent mutations at codons 65 and 66 in reverse transcriptase alleviate indel formation and restore fitness in subtype B HIV-1 containing D67N and K70R drug resistance mutations.

Silent mutations at codons 65 and 66 in reverse transcriptase alleviate indel formation and restore fitness in subtype B HIV-1 containing D67N and K70R drug resistance mutations.

Nucleic acids research (2015-03-15)
Sushama Telwatte, Anna C Hearps, Adam Johnson, Catherine F Latham, Katie Moore, Paul Agius, Mary Tachedjian, Secondo Sonza, Nicolas Sluis-Cremer, P Richard Harrigan, Gilda Tachedjian
ABSTRACT

Resistance to combined antiretroviral therapy (cART) in HIV-1-infected individuals is typically due to nonsynonymous mutations that change the protein sequence; however, the selection of synonymous or 'silent' mutations in the HIV-1 genome with cART has been reported. These silent K65K and K66K mutations in the HIV-1 reverse transcriptase (RT) occur in over 35% of drug-experienced individuals and are highly associated with the thymidine analog mutations D67N and K70R, which confer decreased susceptibility to most nucleoside and nucleotide RT inhibitors. However, the basis for selection of these silent mutations under selective drug pressure is unknown. Using Illumina next-generation sequencing, we demonstrate that the D67N/K70R substitutions in HIV-1 RT increase indel frequency by 100-fold at RT codons 65-67, consequently impairing viral fitness. Introduction of either K65K or K66K into HIV-1 containing D67N/K70R reversed the error-prone DNA synthesis at codons 65-67 in RT and improved viral replication fitness, but did not impact RT inhibitor drug susceptibility. These data provide new mechanistic insights into the role of silent mutations selected during antiretroviral therapy and have broader implications for the relevance of silent mutations in the evolution and fitness of RNA viruses.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
IL-2 human, recombinant, expressed in HEK 293 cells, ≥95% (SDS-PAGE)
Sigma-Aldrich
Interleukin-2 human, recombinant, expressed in Pichia pastoris, suitable for cell culture
Sigma-Aldrich
Interleukin-2 human, IL-2, recombinant, expressed in HEK 293 cells, suitable for cell culture, endotoxin tested
Sigma-Aldrich
Poly(tetrafluoroethylene), powder, 200 μm particle size
Sigma-Aldrich
IL-2 from rat, recombinant, expressed in E. coli, ≥98% (SDS-PAGE), ≥98% (HPLC), suitable for cell culture
Sigma-Aldrich
Interleukin-2, human, Animal-component free, recombinant, expressed in E. coli, suitable for cell culture
Sigma-Aldrich
Interleukin-2 from mouse, IL-2, recombinant, expressed in E. coli, carrier free
Sigma-Aldrich
Poly(tetrafluoroethylene), powder, ≥350 μm particle size
Sigma-Aldrich
Interleukin-2 from mouse, IL-2, recombinant, expressed in E. coli, lyophilized powder, suitable for cell culture
Sigma-Aldrich
Interleukin-2 human, IL-2, recombinant, expressed in E. coli, lyophilized powder, suitable for cell culture
Sigma-Aldrich
Poly(tetrafluoroethylene), powder, >40 μm particle size
Sigma-Aldrich
Poly(tetrafluoroethylene), beads
Sigma-Aldrich
Interleukin-2 human, recombinant, expressed in E. coli, ~10000 U/mL
Sigma-Aldrich
Poly(tetrafluoroethylene), powder (free-flowing), 1 μm particle size
Sigma-Aldrich
Poly(tetrafluoroethylene), powder, 35 μm particle size
Sigma-Aldrich
Poly(tetrafluoroethylene), powder (free-flowing), ≤12 μm particle size