Skip to Content
Merck
  • Genomic occupancy of Runx2 with global expression profiling identifies a novel dimension to control of osteoblastogenesis.

Genomic occupancy of Runx2 with global expression profiling identifies a novel dimension to control of osteoblastogenesis.

Genome biology (2014-03-25)
Hai Wu, Troy W Whitfield, Jonathan A R Gordon, Jason R Dobson, Phillip W L Tai, Andre J van Wijnen, Janet L Stein, Gary S Stein, Jane B Lian
ABSTRACT

Osteogenesis is a highly regulated developmental process and continues during the turnover and repair of mature bone. Runx2, the master regulator of osteoblastogenesis, directs a transcriptional program essential for bone formation through genetic and epigenetic mechanisms. While individual Runx2 gene targets have been identified, further insights into the broad spectrum of Runx2 functions required for osteogenesis are needed. By performing genome-wide characterization of Runx2 binding at the three major stages of osteoblast differentiation--proliferation, matrix deposition and mineralization--we identify Runx2-dependent regulatory networks driving bone formation. Using chromatin immunoprecipitation followed by high-throughput sequencing over the course of these stages, we identify approximately 80,000 significantly enriched regions of Runx2 binding throughout the mouse genome. These binding events exhibit distinct patterns during osteogenesis, and are associated with proximal promoters and also non-promoter regions: upstream, introns, exons, transcription termination site regions, and intergenic regions. These peaks were partitioned into clusters that are associated with genes in complex biological processes that support bone formation. Using Affymetrix expression profiling of differentiating osteoblasts depleted of Runx2, we identify novel Runx2 targets including Ezh2, a critical epigenetic regulator; Crabp2, a retinoic acid signaling component; Adamts4 and Tnfrsf19, two remodelers of the extracellular matrix. We demonstrate by luciferase assays that these novel biological targets are regulated by Runx2 occupancy at non-promoter regions. Our data establish that Runx2 interactions with chromatin across the genome reveal novel genes, pathways and transcriptional mechanisms that contribute to the regulation of osteoblastogenesis.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-Ascorbic acid, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
L-Ascorbic acid, meets USP testing specifications
Sigma-Aldrich
L-Ascorbic acid, reagent grade, crystalline
Sigma-Aldrich
L-Ascorbic acid, suitable for cell culture, suitable for plant cell culture, ≥98%
Sigma-Aldrich
L-Ascorbic acid, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
L-Ascorbic acid, reagent grade
Sigma-Aldrich
L-Ascorbic acid, 99%
Sigma-Aldrich
L-Ascorbic acid, BioUltra, ≥99.5% (RT)
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ≥99.0% (RT)
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ACS reagent, reag. ISO, Ph. Eur., 99.7-100.5% (oxidimetric)
Sigma-Aldrich
L-Ascorbic acid, ACS reagent, ≥99%
Sigma-Aldrich
L-Ascorbic acid, tested according to Ph. Eur.
Supelco
L-Ascorbic acid, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
ANTI-RUNX2 antibody produced in mouse, clone 6E1, purified immunoglobulin, buffered aqueous solution
Supelco
L-Ascorbic acid, analytical standard
Sigma-Aldrich
L-Ascorbic acid, FCC, FG
Sigma-Aldrich
MISSION® esiRNA, targeting human RUNX2
Ascorbic acid, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Normal Rabbit IgG, Normal Rabbit IgG Polyclonal Antibody control validated for use in Immunoprecipitation & Western Blotting.
Supelco
Ascorbic Acid, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Ascorbic acid, United States Pharmacopeia (USP) Reference Standard