Skip to Content
Merck
  • Notch3 interactome analysis identified WWP2 as a negative regulator of Notch3 signaling in ovarian cancer.

Notch3 interactome analysis identified WWP2 as a negative regulator of Notch3 signaling in ovarian cancer.

PLoS genetics (2014-10-31)
Jin-Gyoung Jung, Alexander Stoeck, Bin Guan, Ren-Chin Wu, Heng Zhu, Seth Blackshaw, Ie-Ming Shih, Tian-Li Wang
ABSTRACT

The Notch3 signaling pathway is thought to play a critical role in cancer development, as evidenced by the Notch3 amplification and rearrangement observed in human cancers. However, the molecular mechanism by which Notch3 signaling contributes to tumorigenesis is largely unknown. In an effort to identify the molecular modulators of the Notch3 signaling pathway, we screened for Notch3-intracellular domain (N3-ICD) interacting proteins using a human proteome microarray. Pathway analysis of the Notch3 interactome demonstrated that ubiquitin C was the molecular hub of the top functional network, suggesting the involvement of ubiquitination in modulating Notch3 signaling. Thereby, we focused on functional characterization of an E3 ubiquitin-protein ligase, WWP2, a top candidate in the Notch3 interactome list. Co-immunoprecipitation experiments showed that WWP2 interacted with N3-ICD but not with intracellular domains from other Notch receptors. Wild-type WWP2 but not ligase-deficient mutant WWP2 increases mono-ubiquitination of the membrane-tethered Notch3 fragment, therefore attenuating Notch3 pathway activity in cancer cells and leading to cell cycle arrest. The mono-ubiquitination by WWP2 may target an endosomal/lysosomal degradation fate for Notch3 as suggested by the fact that the process could be suppressed by the endosomal/lysosomal inhibitor. Analysis of The Cancer Genome Atlas dataset showed that the majority of ovarian carcinomas harbored homozygous or heterozygous deletions in WWP2 locus, and there was an inverse correlation in the expression levels between WWP2 and Notch3 in ovarian carcinomas. Furthermore, ectopic expression of WWP2 decreased tumor development in a mouse xenograft model and suppressed the Notch3-induced phenotypes including increase in cancer stem cell-like cell population and platinum resistance. Taken together, our results provide evidence that WWP2 serves as a tumor suppressor by negatively regulating Notch3 signaling in ovarian cancer.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Magnesium sulfate, BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Magnesium sulfate solution, for molecular biology, 1.00 M±0.04 M
Sigma-Aldrich
Magnesium chloride, BioReagent, suitable for insect cell culture, ≥97.0%
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Magnesium chloride solution, PCR Reagent, 25 mM MgCI2 solution for PCR
Sigma-Aldrich
Magnesium chloride solution, for molecular biology, 1.00 M±0.01 M
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, 2 M in H2O
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, ~0.025 M in H2O
Sigma-Aldrich
Magnesium chloride solution, 0.1 M
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.9% trace metals basis
Sigma-Aldrich
Magnesium chloride, powder, <200 μm
Sigma-Aldrich
Magnesium sulfate, ≥99.99% trace metals basis
Sigma-Aldrich
Magnesium sulfate solution, BioUltra, for molecular biology
Sigma-Aldrich
PSF-OXB20-COOH-GST - C-TERMINAL GST TAG BACTERIAL PLASMID, plasmid vector for molecular cloning
Sigma-Aldrich
PSF-OXB20-FLUC - BACTERIAL LUCIFERASE PLASMID, plasmid vector for molecular cloning
Sigma-Aldrich
PSF-CMV-VSVG - VSV G EXPRESSION PLASMID, plasmid vector for molecular cloning
Sigma-Aldrich
PSF-CAG-KAN - CAG PROMOTER VECTOR, plasmid vector for molecular cloning
Sigma-Aldrich
PUC19 - HIGH COPY BLUE/WHITE CLONING PLASMID, plasmid vector for molecular cloning
Sigma-Aldrich
PSF-OXB14 - MEDIUM EXPRESSION E.COLI PLASMID, plasmid vector for molecular cloning
Sigma-Aldrich
PSF-CMV-PURO-NH2-GST-3C - N-TERMINAL GST TAG MAMMALIAN PLASMID, plasmid vector for molecular cloning
Sigma-Aldrich
PSF-CMV-PUC18 - CMV PUC18 MCS PLASMID, plasmid vector for molecular cloning
Sigma-Aldrich
PSF-CMV-PURO-NH2-HA - N-TERMINAL HA TAG MAMMALIAN PLASMID, plasmid vector for molecular cloning
Sigma-Aldrich
PSF-OXB20-COOH-3C-MBP-6HIS - C-TERMINAL 6 HIS AND MBP DUAL TAG BACTERIAL PLASMID, plasmid vector for molecular cloning
Sigma-Aldrich
PSF-CMV-CMV-SBFI-UB-PURO - DUAL CMV EXPRESSION PLASMID, plasmid vector for molecular cloning
Sigma-Aldrich
PSF-AD5E1A - ADENOVIRUS E1A PROMOTER PLASMID, plasmid vector for molecular cloning
Sigma-Aldrich
PSF-OXB20 - STRONG BACTERIAL PROMOTER PLASMID, plasmid vector for molecular cloning
Sigma-Aldrich
PSF-EF1-PURO - ELONGATION FACTOR 1 ALPHA PROMOTER PUROMYCIN PLASMID, plasmid vector for molecular cloning