Skip to Content
Merck
  • R(+)-pulegone impairs Ca²+ homeostasis and causes negative inotropism in mammalian myocardium.

R(+)-pulegone impairs Ca²+ homeostasis and causes negative inotropism in mammalian myocardium.

European journal of pharmacology (2011-10-19)
Sandra Valeria Santos de Cerqueira, Antonio Nei Santana Gondim, Danilo Roman-Campos, Jader Santos Cruz, Amilton Gustavo da Silva Passos, Sandra Lauton-Santos, Aline Lara, Silvia Guatimosim, Eduardo Antonio Conde-Garcia, Evaleide Diniz de Oliveira, Carla Maria Lins de Vasconcelos
ABSTRACT

The present study aimed to investigate the inotropic effects of R(+)-pulegone, a monoterpene found in plant species belonging to the genus Mentha, on the mammalian heart. In electrically stimulated guinea pig atria, R(+)-pulegone reduced the contractile force (~83%) and decreased the contraction time measured at 50% of the maximum force amplitude (CT(50)) from 45.8 ± 6.2 ms to 36.9 ± 6.2 ms, suggesting that R(+)-pulegone may have an effect on Ca(2+) homeostasis. Nifedipine (40 μM), taken as a positive control, showed a very similar profile. To explore the hypothesis that R(+)-pulegone is somehow affecting Ca(2+) handling, we determined concentration-response curves for both CaCl(2) and BAY K8644. R(+)-pulegone shifted these curves rightward. Using isolated mouse ventricular cardiomyocytes, we measured whole-cell L-type Ca(2+) current and observed an I(Ca,L) peak reduction of 13.7 ± 2.5% and 40.2 ± 2.9% after a 3-min perfusion with 0.11 and 1.1mM of R(+)-pulegone, respectively. In addition, the intracellular Ca(2+) transient was decreased (72.9%) by 3.2mM R(+)-pulegone, with no significant changes in [Ca(2+)](i) transient decay kinetics. Moreover, R(+)-pulegone at 1.1mM prolonged the action potential duration at 10, 50, and 90% of repolarisation. The lengthening of the action potential duration may be attributed to the substantial blockade of the outward K(+) currents caused by 1.1mM of R(+)-pulegone (90.5% at 60 mV). These findings suggest that R(+)-pulegone exerts its negative inotropic effect on mammalian heart mainly by decreasing the L-type Ca(2+) current and the global intracellular Ca(2+) transient.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
(R)-(+)-Pulegone, ≥90%
Sigma-Aldrich
(R)-(+)-Pulegone, 85%, technical grade
Sigma-Aldrich
(R)-(+)-Pulegone, ≥90%
Sigma-Aldrich
(S)-(−)-Pulegone, 98%
Supelco
(+)-Pulegone, analytical standard