Skip to Content
Merck
  • Fasting induces a subcutaneous-to-visceral fat switch mediated by microRNA-149-3p and suppression of PRDM16.

Fasting induces a subcutaneous-to-visceral fat switch mediated by microRNA-149-3p and suppression of PRDM16.

Nature communications (2016-06-01)
Hanying Ding, Shasha Zheng, Daniel Garcia-Ruiz, Dongxia Hou, Zhe Wei, Zhicong Liao, Limin Li, Yujing Zhang, Xiao Han, Ke Zen, Chen-Yu Zhang, Jing Li, Xiaohong Jiang
ABSTRACT

Visceral adiposity is strongly associated with metabolic disease risk, whereas subcutaneous adiposity is comparatively benign. However, their relative physiological importance in energy homeostasis remains unclear. Here, we show that after 24-h fasting, the subcutaneous adipose tissue of mice acquires key properties of visceral fat. During this fast-induced 'visceralization', upregulation of miR-149-3p directly targets PR domain containing 16 (PRDM16), a key coregulatory protein required for the 'browning' of white fat. In cultured inguinal preadipocytes, overexpression of miR-149-3p promotes a visceral-like switch during cell differentiation. Mice deficient in miR-149-3p display an increase in whole-body energy expenditure, with enhanced thermogenesis of inguinal fat. However, a visceral-like adipose phenotype is observed in inguinal depots overexpressing miR-149-3p. These results indicate that in addition to the capacity of 'browning' to defend against hypothermia during cold exposure, the subcutaneous adipose depot is also capable of 'whitening' to preserve energy during fasting, presumably to maintain energy balance, via miR-149-3p-mediated regulation of PRDM16.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
MystiCq® microRNA® SYBR® Green qPCR ReadyMix, with ROX, formulation for miRNA RT-qPCR