Skip to Content
Merck
  • Coactivator SRC-2-dependent metabolic reprogramming mediates prostate cancer survival and metastasis.

Coactivator SRC-2-dependent metabolic reprogramming mediates prostate cancer survival and metastasis.

The Journal of clinical investigation (2015-02-11)
Subhamoy Dasgupta, Nagireddy Putluri, Weiwen Long, Bin Zhang, Jianghua Wang, Akash K Kaushik, James M Arnold, Salil K Bhowmik, Erin Stashi, Christine A Brennan, Kimal Rajapakshe, Cristian Coarfa, Nicholas Mitsiades, Michael M Ittmann, Arul M Chinnaiyan, Arun Sreekumar, Bert W O'Malley
ABSTRACT

Metabolic pathway reprogramming is a hallmark of cancer cell growth and survival and supports the anabolic and energetic demands of these rapidly dividing cells. The underlying regulators of the tumor metabolic program are not completely understood; however, these factors have potential as cancer therapy targets. Here, we determined that upregulation of the oncogenic transcriptional coregulator steroid receptor coactivator 2 (SRC-2), also known as NCOA2, drives glutamine-dependent de novo lipogenesis, which supports tumor cell survival and eventual metastasis. SRC-2 was highly elevated in a variety of tumors, especially in prostate cancer, in which SRC-2 was amplified and overexpressed in 37% of the metastatic tumors evaluated. In prostate cancer cells, SRC-2 stimulated reductive carboxylation of α-ketoglutarate to generate citrate via retrograde TCA cycling, promoting lipogenesis and reprogramming of glutamine metabolism. Glutamine-mediated nutrient signaling activated SRC-2 via mTORC1-dependent phosphorylation, which then triggered downstream transcriptional responses by coactivating SREBP-1, which subsequently enhanced lipogenic enzyme expression. Metabolic profiling of human prostate tumors identified a massive increase in the SRC-2-driven metabolic signature in metastatic tumors compared with that seen in localized tumors, further implicating SRC-2 as a prominent metabolic coordinator of cancer metastasis. Moreover, SRC-2 inhibition in murine models severely attenuated the survival, growth, and metastasis of prostate cancer. Together, these results suggest that the SRC-2 pathway has potential as a therapeutic target for prostate cancer.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-Glutamine, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
L-Glutamine
Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
SAFC
L-Glutamine
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Sigma-Aldrich
Formic acid, ACS reagent, ≥88%
Sigma-Aldrich
Formic acid, ACS reagent, ≥96%
Supelco
L-Glutamine, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol solution, (Methanol:Dimethyl sulfoxide 1:1 (v/v))
Supelco
L-Glutamine, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
L-Glutamine
USP
Methyl alcohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Supelco
Rapamycin, VETRANAL®, analytical standard
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
Formic acid solution, BioUltra, 1.0 M in H2O
Supelco
Carbendazim, PESTANAL®, analytical standard
Sigma-Aldrich
Carbendazim, 97%
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Formic acid, reagent grade, ≥95%
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%