Skip to Content
Merck
  • High-performance thin-layer chromatography screening of multi class antibiotics in animal food by bioluminescent bioautography and electrospray ionization mass spectrometry.

High-performance thin-layer chromatography screening of multi class antibiotics in animal food by bioluminescent bioautography and electrospray ionization mass spectrometry.

Journal of chromatography. A (2014-07-13)
Yisheng Chen, Wolfgang Schwack
ABSTRACT

The world-wide usage and partly abuse of veterinary antibiotics resulted in a pressing need to control residues in animal-derived foods. Large-scale screening for residues of antibiotics is typically performed by microbial agar diffusion tests. This work employing high-performance thin-layer chromatography (HPTLC) combined with bioautography and electrospray ionization mass spectrometry introduces a rapid and efficient method for a multi-class screening of antibiotic residues. The viability of the bioluminescent bacterium Aliivibrio fischeri to the studied antibiotics (16 species of 5 groups) was optimized on amino plates, enabling detection sensitivity down to the strictest maximum residue limits. The HPTLC method was developed not to separate the individual antibiotics, but for cleanup of sample extracts. The studied antibiotics either remained at the start zones (tetracyclines, aminoglycosides, fluoroquinolones, and macrolides) or migrated into the front (amphenicols), while interfering co-extracted matrix compounds were dispersed at hRf 20-80. Only after a few hours, the multi-sample plate image clearly revealed the presence or absence of antibiotic residues. Moreover, molecular information as to the suspected findings was rapidly achieved by HPTLC-mass spectrometry. Showing remarkable sensitivity and matrix-tolerance, the established method was successfully applied to milk and kidney samples.

MATERIALS
Product Number
Brand
Product Description

Sulfadiazine for identification of impurity F, European Pharmacopoeia (EP) Reference Standard
Sulfadimidine for peak identification, European Pharmacopoeia (EP) Reference Standard
USP
Methyl alcohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Ultrapure Acetonitrile
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Ciprofloxacin, European Pharmacopoeia (EP) Reference Standard
USP
Enrofloxacin, United States Pharmacopeia (USP) Reference Standard
Supelco
Enrofloxacin, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Residual Solvent Class 2 - Acetonitrile, United States Pharmacopeia (USP) Reference Standard
Supelco
Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Sulfadiazine, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Sulfadiazine, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acetonitrile, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Supelco
Chloramphenicol, VETRANAL®, analytical standard
Supelco
Ciprofloxacin, VETRANAL®, analytical standard
Supelco
Enrofloxacin, VETRANAL®, analytical standard
Sigma-Aldrich
Methanol solution, (Methanol:Dimethyl sulfoxide 1:1 (v/v))
Millipore
Oxytetra Selective Supplement, suitable for microbiology
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Enrofloxacin, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Supelco
Ciprofloxacin, Pharmaceutical Secondary Standard; Certified Reference Material
Sulfadimidine, European Pharmacopoeia (EP) Reference Standard
Chloramphenicol, European Pharmacopoeia (EP) Reference Standard