Skip to Content
Merck
  • Preparation and in vitro evaluation of propylthiouracil microspheres made of Eudragit RL 100 and cellulose acetate butyrate polymers using the emulsion-solvent evaporation method.

Preparation and in vitro evaluation of propylthiouracil microspheres made of Eudragit RL 100 and cellulose acetate butyrate polymers using the emulsion-solvent evaporation method.

Journal of microencapsulation (2005-07-16)
W M Obeidat, J C Price
ABSTRACT

The objectives of this investigation are to evaluate the encapsulation efficiency of the anti-thyroid agent 6-n-propyl-2-thiouracil using two polymers of different characteristics (cellulose acetate butyrate polymer, (CAB-551-0.01) and ammonio methacrylate copolymer (Eudragit RL 100) and to study the effect of this encapsulation on the drug release properties. Polymers were used separately and in combination to prepare different microspheres. Also, the effect of polymer solution phase viscosity was studied for each of the polymers and for their combinations. An Ostwald viscometer was used to evaluate the relative viscosities of polymer solution phases and their combinations. Microspheres with 25% theoretical drug loading of 6-n-propyl-2-thiouracil core material were prepared by the emulsion solvent evaporation method. Microspheres prepared from CAB-551-0.01, which has higher relative polymer phase viscosity than Eudragit RL 100, showed significantly lower drug release rates and a noticeable lag time. Polymer combinations of CAB-551-0.01 and Eudragit RL 100 (1:1) showed an interesting synergistic increase in relative polymer solution viscosities at all concentrations. Unlike microspheres prepared from the two polymers separately which follow Higuchi spherical matrix release kinetics, microspheres prepared using a combination (1:1) of the two polymers showed near zero order with faster rates compared to those prepared using CAB-551-0.01 equivalent polymer concentrations. The results of this study suggest that 6-n-propyl-2-thiouracil was successfully and efficiently encapsulated and release rates of matrix microspheres are related to polymer solution phase viscosity, but when polymer combinations were used other factors such as structural effects must be considered.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Cellulose acetate butyrate, average Mn ~30,000
Sigma-Aldrich
Cellulose acetate butyrate, average Mn ~70,000
Sigma-Aldrich
Cellulose acetate butyrate
Sigma-Aldrich
Cellulose acetate butyrate, average Mn ~12,000
Sigma-Aldrich
Cellulose acetate butyrate, average Mn ~30,000