跳转至内容
Merck
  • Persistent response of Fanconi anemia haematopoietic stem and progenitor cells to oxidative stress.

Persistent response of Fanconi anemia haematopoietic stem and progenitor cells to oxidative stress.

Cell cycle (Georgetown, Tex.) (2017-05-06)
Yibo Li, Surya Amarachintha, Andrew F Wilson, Xue Li, Wei Du
摘要

Oxidative stress is considered as an important pathogenic factor in many human diseases including Fanconi anemia (FA), an inherited bone marrow failure syndrome with extremely high risk of leukemic transformation. Members of the FA protein family are involved in DNA damage and other cellular stress responses. Loss of FA proteins renders cells hypersensitive to oxidative stress and cancer transformation. However, how FA cells respond to oxidative DNA damage remains unclear. By using an in vivo stress-response mouse strain expressing the Gadd45β-luciferase transgene, we show here that haematopoietic stem and progenitor cells (HSPCs) from mice deficient for the FA gene Fanca or Fancc persistently responded to oxidative stress. Mechanistically, we demonstrated that accumulation of unrepaired DNA damage, particularly in oxidative damage-sensitive genes, was responsible for the long-lasting response in FA HSPCs. Furthermore, genetic correction of Fanca deficiency almost completely abolished the persistent oxidative stress-induced G2/M arrest and DNA damage response in vivo. Our study suggests that FA pathway is an integral part of a versatile cellular mechanism by which HSPCs respond to oxidative stress.

材料
货号
品牌
产品描述

Sigma-Aldrich
单克隆抗 β-肌动蛋白抗体 小鼠抗, clone AC-15, ascites fluid
Sigma-Aldrich
核糖核酸酶A 来源于牛胰腺, for molecular biology, ≥70 Kunitz units/mg protein, lyophilized
Sigma-Aldrich
抗 8-氧鸟嘌呤抗体,克隆 483.15, ascites fluid, clone 483.15, Chemicon®