跳转至内容
Merck
  • How cell wall complexity influences saccharification efficiency in Miscanthus sinensis.

How cell wall complexity influences saccharification efficiency in Miscanthus sinensis.

Journal of experimental botany (2015-04-25)
Amanda P De Souza, Claire L Alvim Kamei, Andres F Torres, Sivakumar Pattathil, Michael G Hahn, Luisa M Trindade, Marcos S Buckeridge
摘要

The production of bioenergy from grasses has been developing quickly during the last decade, with Miscanthus being among the most important choices for production of bioethanol. However, one of the key barriers to producing bioethanol is the lack of information about cell wall structure. Cell walls are thought to display compositional differences that lead to emergence of a very high level of complexity, resulting in great diversity in cell wall architectures. In this work, a set of different techniques was used to access the complexity of cell walls of different genotypes of Miscanthus sinensis in order to understand how they interfere with saccharification efficiency. Three genotypes of M. sinensis displaying different patterns of correlation between lignin content and saccharification efficiency were subjected to cell wall analysis by quantitative/qualitative analytical techniques such as monosaccharide composition, oligosaccharide profiling, and glycome profiling. When saccharification efficiency was correlated negatively with lignin, the structural features of arabinoxylan and xyloglucan were found to contribute positively to hydrolysis. In the absence of such correlation, different types of pectins, and some mannans contributed to saccharification efficiency. Different genotypes of M. sinensis were shown to display distinct interactions among their cell wall components, which seem to influence cell wall hydrolysis.

材料
货号
品牌
产品描述

Sigma-Aldrich
乙酸钠, >99%, FG
Sigma-Aldrich
木聚糖酶, powder, ≥2500 units/g, recombinant, expressed in Aspergillus oryzae
Sigma-Aldrich
乙酸钠, 99.995% trace metals basis
Sigma-Aldrich
乙酸钠 溶液, BioUltra, for molecular biology, ~3 M in H2O
Sigma-Aldrich
乙酸钠, anhydrous, BioUltra, for luminescence, for molecular biology, ≥99.0% (NT)
Sigma-Aldrich
乙酸钠, anhydrous, for molecular biology, ≥99%
Sigma-Aldrich
乙酸钠, powder, BioReagent, suitable for electrophoresis, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
乙酸钠, BioXtra, ≥99.0%
Sigma-Aldrich
乙酸钠, meets USP testing specifications, anhydrous