跳转至内容
Merck
  • Photoluminescence imaging of solitary dopant sites in covalently doped single-wall carbon nanotubes.

Photoluminescence imaging of solitary dopant sites in covalently doped single-wall carbon nanotubes.

Nanoscale (2015-11-21)
Nicolai F Hartmann, Sibel Ebru Yalcin, Lyudmyla Adamska, Erik H Hároz, Xuedan Ma, Sergei Tretiak, Han Htoon, Stephen K Doorn
摘要

Covalent dopants in semiconducting single wall carbon nanotubes (SWCNTs) are becoming important as routes for introducing new photoluminescent emitting states with potential for enhanced quantum yields, new functionality, and as species capable of near-IR room-temperature single photon emission. The origin and behavior of the dopant-induced emission is thus important to understand as a key requirement for successful room-T photonics and optoelectronics applications. Here, we use direct correlated two-color photoluminescence imaging to probe how the interplay between the SWCNT bright E(11) exciton and solitary dopant sites yields the dopant-induced emission for three different dopant species: oxygen, 4-methoxybenzene, and 4-bromobenzene. We introduce a route to control dopant functionalization to a low level as a means for introducing spatially well-separated solitary dopant sites. Resolution of emission from solitary dopant sites and correlation to their impact on E(11) emission allows confirmation of dopants as trapping sites for localization of E(11) excitons following their diffusive transport to the dopant site. Imaging of the dopant emission also reveals photoluminescence intermittency (blinking), with blinking dynamics being dependent on the specific dopant. Density functional theory calculations were performed to evaluate the stability of dopants and delineate the possible mechanisms of blinking. Theoretical modeling suggests that the trapping of free charges in the potential well created by permanent dipoles introduced by dopant atoms/groups is likely responsible for the blinking, with the strongest effects being predicted and observed for oxygen-doped SWCNTs.

材料
货号
品牌
产品描述

Sigma-Aldrich
氢氧化钠, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
水, Nuclease-Free Water, for Molecular Biology
Sigma-Aldrich
氢氧化钠, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
十二烷基硫酸钠, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
氢氧化钠 溶液, 50% in H2O
Sigma-Aldrich
水, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
十二烷基硫酸钠, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
氢氧化钠 溶液, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
水, Deionized
Sigma-Aldrich
氢氧化钠 溶液, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
十二烷基硫酸钠 溶液, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
氢氧化钠, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
脱氧胆酸钠, BioXtra, ≥98.0% (dry matter, NT)
Sigma-Aldrich
氢氧化钠, puriss. p.a., ACS reagent, reag. Ph. Eur., K ≤0.02%, ≥98%, pellets
Sigma-Aldrich
十二烷基硫酸钠, ACS reagent, ≥99.0%
Sigma-Aldrich
氢氧化钠, reagent grade, 97%, powder
Sigma-Aldrich
氢氧化钠, puriss., meets analytical specification of Ph. Eur., BP, NF, E524, 98-100.5%, pellets
Sigma-Aldrich
十二烷基硫酸钠, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
十二烷基苯磺酸钠, technical grade
Sigma-Aldrich
水, for embryo transfer, sterile-filtered, BioXtra, suitable for mouse embryo cell culture