跳转至内容
Merck
  • MUCILAGE-RELATED10 Produces Galactoglucomannan That Maintains Pectin and Cellulose Architecture in Arabidopsis Seed Mucilage.

MUCILAGE-RELATED10 Produces Galactoglucomannan That Maintains Pectin and Cellulose Architecture in Arabidopsis Seed Mucilage.

Plant physiology (2015-07-30)
Cătălin Voiniciuc, Maximilian Heinrich-Wilhelm Schmidt, Adeline Berger, Bo Yang, Berit Ebert, Henrik V Scheller, Helen M North, Björn Usadel, Markus Günl
摘要

Plants invest a lot of their resources into the production of an extracellular matrix built of polysaccharides. While the composition of the cell wall is relatively well characterized, the functions of the individual polymers and the enzymes that catalyze their biosynthesis remain poorly understood. We exploited the Arabidopsis (Arabidopsis thaliana) seed coat epidermis (SCE) to study cell wall synthesis. SCE cells produce mucilage, a specialized secondary wall that is rich in pectin, at a precise stage of development. A coexpression search for MUCILAGE-RELATED (MUCI) genes identified MUCI10 as a key determinant of mucilage properties. MUCI10 is closely related to a fenugreek (Trigonella foenumgraecum) enzyme that has in vitro galactomannan α-1,6-galactosyltransferase activity. Our detailed analysis of the muci10 mutants demonstrates that mucilage contains highly branched galactoglucomannan (GGM) rather than unbranched glucomannan. MUCI10 likely decorates glucomannan, synthesized by CELLULOSE SYNTHASE-LIKE A2, with galactose residues in vivo. The degree of galactosylation is essential for the synthesis of the GGM backbone, the structure of cellulose, mucilage density, as well as the adherence of pectin. We propose that GGM scaffolds control mucilage architecture along with cellulosic rays and show that Arabidopsis SCE cells represent an excellent model in which to study the synthesis and function of GGM. Arabidopsis natural varieties with defects similar to muci10 mutants may reveal additional genes involved in GGM synthesis. Since GGM is the most abundant hemicellulose in the secondary walls of gymnosperms, understanding its biosynthesis may facilitate improvements in the production of valuable commodities from softwoods.

材料
货号
品牌
产品描述

Sigma-Aldrich
蔗糖, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
蔗糖, ≥99.5% (GC)
Sigma-Aldrich
蔗糖, ≥99.5% (GC), BioXtra
Sigma-Aldrich
氯化钠, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
硫酸, 99.999%
Sigma-Aldrich
蔗糖, BioUltra, for molecular biology, ≥99.5% (HPLC)
Sigma-Aldrich
L -还原型谷胱甘肽, ≥98.0%
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
L -还原型谷胱甘肽, suitable for cell culture, BioReagent, ≥98.0%, powder
Sigma-Aldrich
异硫氰酸荧光素-葡聚糖, average mol wt 70,000, (FITC:Glucose = 1:250)
Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
SAFC
氯化钠 溶液, 5 M
Sigma-Aldrich
蔗糖, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
蔗糖, ≥99.5% (GC)
Sigma-Aldrich
氯化钠 溶液, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
氯化钠, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
氯化钠, 99.999% trace metals basis
Sigma-Aldrich
蔗糖, ACS reagent
Sigma-Aldrich
乙酸钠, anhydrous, for molecular biology, ≥99%