跳转至内容
Merck
  • Discovery of GSK2795039, a Novel Small Molecule NADPH Oxidase 2 Inhibitor.

Discovery of GSK2795039, a Novel Small Molecule NADPH Oxidase 2 Inhibitor.

Antioxidants & redox signaling (2015-07-03)
Kazufumi Hirano, Woei Shin Chen, Adeline L W Chueng, Angela A Dunne, Tamara Seredenina, Aleksandra Filippova, Sumitra Ramachandran, Angela Bridges, Laiq Chaudry, Gary Pettman, Craig Allan, Sarah Duncan, Kiew Ching Lee, Jean Lim, May Thu Ma, Agnes B Ong, Nicole Y Ye, Shabina Nasir, Sri Mulyanidewi, Chiu Cheong Aw, Pamela P Oon, Shihua Liao, Dizheng Li, Douglas G Johns, Neil D Miller, Ceri H Davies, Edward R Browne, Yasuji Matsuoka, Deborah W Chen, Vincent Jaquet, A Richard Rutter
摘要

The NADPH oxidase (NOX) family of enzymes catalyzes the formation of reactive oxygen species (ROS). NOX enzymes not only have a key role in a variety of physiological processes but also contribute to oxidative stress in certain disease states. To date, while numerous small molecule inhibitors have been reported (in particular for NOX2), none have demonstrated inhibitory activity in vivo. As such, there is a need for the identification of improved NOX inhibitors to enable further evaluation of the biological functions of NOX enzymes in vivo as well as the therapeutic potential of NOX inhibition. In this study, both the in vitro and in vivo pharmacological profiles of GSK2795039, a novel NOX2 inhibitor, were characterized in comparison with other published NOX inhibitors. GSK2795039 inhibited both the formation of ROS and the utilization of the enzyme substrates, NADPH and oxygen, in a variety of semirecombinant cell-free and cell-based NOX2 assays. It inhibited NOX2 in an NADPH competitive manner and was selective over other NOX isoforms, xanthine oxidase, and endothelial nitric oxide synthase enzymes. Following systemic administration in mice, GSK2795039 abolished the production of ROS by activated NOX2 enzyme in a paw inflammation model. Furthermore, GSK2795039 showed activity in a murine model of acute pancreatitis, reducing the levels of serum amylase triggered by systemic injection of cerulein. GSK2795039 is a novel NOX2 inhibitor that is the first small molecule to demonstrate inhibition of the NOX2 enzyme in vivo.

材料
货号
品牌
产品描述

Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
佛波醇12-十四酸酯13-乙酸酯, ≥99% (TLC), film or powder
Sigma-Aldrich
PMA, for use in molecular biology applications, ≥99% (HPLC)
Sigma-Aldrich
乙二醇-双(2-氨基乙醚)-N,N,N′,N′-四乙酸, for molecular biology, ≥97.0%
Sigma-Aldrich
杜氏改良 Eagle 培养基 - 高葡萄糖, With 4500 mg/L glucose and L-glutamine, without sodium bicarbonate, powder, suitable for cell culture
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
HEPES缓冲溶液, 1 M in H2O
Sigma-Aldrich
次黄嘌呤, ≥99.0%
SAFC
HEPES
Sigma-Aldrich
四环素, 98.0-102.0% (HPLC)
Sigma-Aldrich
四环素, 98.0-102.0% (HPLC)
Sigma-Aldrich
黄嘌呤, ≥99%
Sigma-Aldrich
次黄嘌呤, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
佛波醇12-十四酸酯13-乙酸酯, synthetic, ≥98.0% (TLC)
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
SAFC
HEPES
Sigma-Aldrich
黄嘌呤, ≥99.5% (HPLC), purified by recrystallization
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
乙二醇-双(2-氨基乙醚)-N,N,N′,N′-四乙酸, ≥97.0%
Sigma-Aldrich
黄嘌呤, BioUltra, ≥99%
Sigma-Aldrich
乙二醇-双(2-氨基乙醚)-N,N,N′,N′-四乙酸, BioXtra, ≥97 .0%
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%
Sigma-Aldrich
GSK2795039, ≥98% (HPLC)
Sigma-Aldrich
HEPES, Vetec, reagent grade, 99.5%