跳转至内容
Merck
  • Intestinal mast cells mediate gut injury and systemic inflammation in a rat model of deep hypothermic circulatory arrest.

Intestinal mast cells mediate gut injury and systemic inflammation in a rat model of deep hypothermic circulatory arrest.

Critical care medicine (2013-03-13)
Jörn Karhausen, Ma Qing, Amelia Gibson, Adam J Moeser, Harald Griefingholt, Laura P Hale, Soman N Abraham, G Burkhard Mackensen
摘要

Cardiac surgery, especially when employing cardiopulmonary bypass and deep hypothermic circulatory arrest, is associated with systemic inflammatory responses that significantly affect morbidity and mortality. Intestinal perfusion abnormalities have been implicated in such responses, but the mechanisms linking local injury and systemic inflammation remain unclear. Intestinal mast cells are specialized immune cells that secrete various preformed effectors in response to cellular stress. We hypothesized that mast cells are activated in a microenvironment shaped by intestinal ischemia/reperfusion, and investigated local and systemic consequences. Rat model of deep hypothermic circulatory arrest. University research laboratory. Twelve- to 14-week-old male Sprague-Dawley rats. Rats were anesthetized and cooled to 16°C to 18°C on cardiopulmonary bypass before instituting deep hypothermic circulatory arrest for 45 minutes. Specimens were harvested following rewarming and 2 hours of recovery. Significant intestinal barrier disruption was found, together with macro- and microscopic evidence of ischemia/reperfusion injury in ileum and colon, but not in the lungs or kidneys. Immunofluorescence and toluidine blue staining revealed increased numbers of mast cells and their activation in the gut. In animals pretreated with the mast cell stabilizer, cromolyn sodium, mast cell degranulation was blocked, and intestinal morphology and barrier function were preserved following deep hypothermic circulatory arrest. Furthermore, cromolyn sodium treatment was associated with reduced intestinal neutrophil influx and blunted systemic release of proinflammatory cytokines. Our data provide primary evidence that intestinal ischemia/reperfusion is a leading pathophysiologic process in a rat model of deep hypothermic circulatory arrest, and that intestinal injury, and local and systemic inflammatory responses are critically dependent on mast cell activation. This identifies intestinal mast cells as central players in deep hypothermic circulatory arrest-associated responses, and opens novel therapeutic possibilities for patients undergoing this procedure.

材料
货号
品牌
产品描述

Sigma-Aldrich
磷酸酶底物, 5 mg tablets
Sigma-Aldrich
4-硝基苯基磷酸盐 二钠盐 六水合物, suitable for enzyme immunoassay, ≥99.0% (enzymatic)
Sigma-Aldrich
4-硝基苯基磷酸盐 二钠盐 六水合物, tablet
Sigma-Aldrich
4-硝基苯基磷酸盐 二钠盐 六水合物, powder, BioReagent, suitable for cell culture, ≥97%
Sigma-Aldrich
4-硝基苯基磷酸盐 二钠盐 六水合物, tablet
Sigma-Aldrich
联茴香胺, peroxidase substrate
Sigma-Aldrich
磷酸酶底物, powder
Sigma-Aldrich
磷酸钾, reagent grade, ≥98%
Sigma-Aldrich
4-硝基苯基磷酸盐 二钠盐 六水合物, tablet
Sigma-Aldrich
磷酸酶底物, 40 mg tablets
Sigma-Aldrich
磷酸酶底物, 100 mg capsules
Sigma-Aldrich
磷酸酶底物, 40 mg capsules
Sigma-Aldrich
磷酸酶底物, Suitable for manufacturing of diagnostic kits and reagents
Supelco
联茴香胺, for spectrophotometric det. of Au, NO2-, Ce(IV), for the detection of Au, Co, Cu, SCN-, V, ≥97.0%