跳转至内容
Merck
  • Influenza A virus-induced degradation of eukaryotic translation initiation factor 4B contributes to viral replication by suppressing IFITM3 protein expression.

Influenza A virus-induced degradation of eukaryotic translation initiation factor 4B contributes to viral replication by suppressing IFITM3 protein expression.

Journal of virology (2014-05-16)
Song Wang, Xiaojuan Chi, Haitao Wei, Yuhai Chen, Zhilong Chen, Shile Huang, Ji-Long Chen
摘要

Although alteration in host cellular translation machinery occurs in virus-infected cells, the role of such alteration and the precise pathogenic processes are not well understood. Influenza A virus (IAV) infection shuts off host cell gene expression at transcriptional and translational levels. Here, we found that the protein level of eukaryotic translation initiation factor 4B (eIF4B), an integral component of the translation initiation apparatus, was dramatically reduced in A549 cells as well as in the lung, spleen, and thymus of mice infected with IAV. The decrease in eIF4B level was attributed to lysosomal degradation of eIF4B, which was induced by viral NS1 protein. Silencing eIF4B expression in A549 cells significantly promoted IAV replication, and conversely, overexpression of eIF4B markedly inhibited the viral replication. Importantly, we observed that eIF4B knockdown transgenic mice were more susceptible to IAV infection, exhibiting faster weight loss, shorter survival time, and more-severe organ damage. Furthermore, we demonstrated that eIF4B regulated the expression of interferon-induced transmembrane protein 3 (IFITM3), a critical protein involved in immune defense against a variety of RNA viruses, including influenza virus. Taken together, our findings reveal that eIF4B plays an important role in host defense against IAV infection at least by regulating the expression of IFITM3, which restricts viral entry and thereby blocks early stages of viral production. These data also indicate that influenza virus has evolved a strategy to overcome host innate immunity by downregulating eIF4B protein. Influenza A virus (IAV) infection stimulates the host innate immune system, in part, by inducing interferons (IFNs). Secreted IFNs activate the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway, leading to elevated transcription of a large group of IFN-stimulated genes that have antiviral function. To circumvent the host innate immune response, influenza virus has evolved multiple strategies for suppressing the production of IFNs. Here, we show that IAV infection induces lysosomal degradation of eIF4B protein; and eIF4B inhibits IAV replication by upregulating expression of interferon-induced transmembrane protein 3 (IFITM3), a key protein that protects the host from virus infection. Our finding illustrates a critical role of eIF4B in the host innate immune response and provides novel insights into the complex mechanisms by which influenza virus interacts with its host.

材料
货号
品牌
产品描述

Sigma-Aldrich
环己酰亚胺,大包装, from microbial, ≥94% (TLC)
Sigma-Aldrich
环己酰亚胺 溶液, Ready-Made Solution, microbial, 100 mg/mL in DMSO, Suitable for cell culture
Sigma-Aldrich
氯化铵, ReagentPlus®, ≥99.5%
Sigma-Aldrich
氯化铵, for molecular biology, suitable for cell culture, ≥99.5%
Sigma-Aldrich
环己酰亚胺,大包装, ≥90% (HPLC)
Sigma-Aldrich
氯化铵, 99.998% trace metals basis
Sigma-Aldrich
环己酰亚胺,大包装, Biotechnology Performance Certified
Sigma-Aldrich
乙酰氯, reagent grade, 98%
Sigma-Aldrich
Z-Leu-Leu-Leu-al, ≥90% (HPLC)
Sigma-Aldrich
氯化铵, 99.99% trace metals basis
Sigma-Aldrich
乙酰氯, puriss. p.a., ≥99.0% (T)
Sigma-Aldrich
氯化铵, BioUltra, for molecular biology, ≥99.5% (AT)
Millipore
环己酰亚胺 溶液, 0.1%, suitable for microbiology
Supelco
氯化铵, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
乙酰氯, reagent grade, 98%
Sigma-Aldrich
氯化铵, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, 99.5-100.5% (calc. to the dried substance)
Sigma-Aldrich
N--甲苯磺酰基-L-苯基乙基氯甲基酮, ≥97% (TLC), powder
Sigma-Aldrich
乙酰氯 溶液, 1 M in methylene chloride