- ksgA mutations confer resistance to kasugamycin in Neisseria gonorrhoeae.
ksgA mutations confer resistance to kasugamycin in Neisseria gonorrhoeae.
The aminoglycoside antibiotic kasugamycin (KSG) inhibits translation initiation and thus the growth of many bacteria. In this study, we tested the susceptibilities to KSG of 22 low-passage clinical isolates and 2 laboratory strains of Neisseria gonorrhoeae. Although the range of KSG minimum inhibitory concentrations (MICs) was narrow (seven-fold), clinical isolates and laboratory strains fell into three distinct classes of KSG sensitivity, susceptible, somewhat sensitive and resistant, with MICs of 30, 60-100 and 200 microg/mL, respectively. Two genes have previously been shown to be involved in bacterial KSG resistance: rpsI, which encodes the 30S ribosomal subunit S9 protein; and ksgA, which encodes a predicted dimethyltransferase. Although sequencing of rpsI and ksgA from clinical isolates revealed polymorphisms, none correlated with the MICs of KSG. Ten spontaneous KSG-resistant (KSG(R)) mutants were isolated from laboratory strain FA1090 at a frequency of <4.4x10(-6) resistant colony-forming units (CFU)/total CFU. All isolated KSG(R) variants had mutations in ksgA, whilst no mutations were observed in rpsI. ksgA mutations conferring KSG resistance included four point mutations, two in-frame and one out-of-frame deletions, one in-frame duplication and two frame-shift insertions. These data show a narrow range of susceptibilities for the clinical isolates and laboratory strains examined; moreover, the differences in MICs do not correlate with nucleotide polymorphisms in rpsI or ksgA. Additionally, spontaneous KSG(R) mutants arise by a variety of ksgA mutations.