跳转至内容
Merck

H3K4 methylation by SETD1A/BOD1L facilitates RIF1-dependent NHEJ.

Molecular cell (2022-04-20)
Rachel Bayley, Valerie Borel, Rhiannon J Moss, Ellie Sweatman, Philip Ruis, Alice Ormrod, Amalia Goula, Rachel M A Mottram, Tyler Stanage, Graeme Hewitt, Marco Saponaro, Grant S Stewart, Simon J Boulton, Martin R Higgs
摘要

The 53BP1-RIF1-shieldin pathway maintains genome stability by suppressing nucleolytic degradation of DNA ends at double-strand breaks (DSBs). Although RIF1 interacts with damaged chromatin via phospho-53BP1 and facilitates recruitment of the shieldin complex to DSBs, it is unclear whether other regulatory cues contribute to this response. Here, we implicate methylation of histone H3 at lysine 4 by SETD1A-BOD1L in the recruitment of RIF1 to DSBs. Compromising SETD1A or BOD1L expression or deregulating H3K4 methylation allows uncontrolled resection of DNA ends, impairs end-joining of dysfunctional telomeres, and abrogates class switch recombination. Moreover, defects in RIF1 localization to DSBs are evident in patient cells bearing loss-of-function mutations in SETD1A. Loss of SETD1A-dependent RIF1 recruitment in BRCA1-deficient cells restores homologous recombination and leads to resistance to poly(ADP-ribose)polymerase inhibition, reinforcing the clinical relevance of these observations. Mechanistically, RIF1 binds directly to methylated H3K4, facilitating its recruitment to, or stabilization at, DSBs.

材料
货号
品牌
产品描述

Sigma-Aldrich
4-羟基他莫西芬, ≥70% Z isomer (remainder primarily E-isomer)
Sigma-Aldrich
羟基脲, 98%, powder
Sigma-Aldrich
Anti-Chk1 antibody, Mouse monoclonal, ~2 mg/mL, clone DCS-310, purified from hybridoma cell culture