跳转至内容
Merck
  • Phα1β Spider Toxin Reverses Glial Structural Plasticity Upon Peripheral Inflammation.

Phα1β Spider Toxin Reverses Glial Structural Plasticity Upon Peripheral Inflammation.

Frontiers in cellular neuroscience (2019-07-30)
Helia Tenza-Ferrer, Luiz Alexandre Viana Magno, Marco Aurélio Romano-Silva, Juliana Figueira da Silva, Marcus Vinicius Gomez
摘要

The incoming signals from injured sensory neurons upon peripheral inflammation are processed in the dorsal horn of spinal cord, where glial cells accumulate and play a critical role in initiating allodynia (increased pain in response to light-touch). However, how painful stimuli in the periphery engage glial reactivity in the spinal cord remains unclear. Here, we found that a hind paw inflammation induced by CFA produces robust morphological changes in spinal astrocytes and microglia compatible with the reactive phenotype. Strikingly, we discovered that a single intrathecal injection with venom peptides that inhibit calcium channels reversed all the glial pathological features of the peripheral inflammation. These effects were more apparent in rats treated with the Phα1β spider toxin (non-specific calcium channel antagonist) than ω-MVIIA cone snail toxin (selective N-type calcium channel antagonist). These data reveal for the first time a venom peptide acting on glial structural remodeling in vivo. We, therefore, suggest that calcium-dependent plasticity is an essential trigger for glial cells to initiate reactivity, which may represent a new target for the antinociceptive effects of Phα1β and ω-MVIIA toxins in inflammatory pain conditions.

材料
货号
品牌
产品描述

Sigma-Aldrich
胶质纤维酸性蛋白(GFAP)单克隆抗体 小鼠抗, clone G-A-5, ascites fluid
Sigma-Aldrich
β-烟酰胺腺嘌呤二核苷酸2′-磷酸,还原型 四钠盐 水合物, ≥95% (HPLC)