跳转至内容
Merck
  • Orexin A in rat rostral ventrolateral medulla is pressor, sympatho-excitatory, increases barosensitivity and attenuates the somato-sympathetic reflex.

Orexin A in rat rostral ventrolateral medulla is pressor, sympatho-excitatory, increases barosensitivity and attenuates the somato-sympathetic reflex.

British journal of pharmacology (2011-09-29)
Israt Z Shahid, Ahmed A Rahman, Paul M Pilowsky
摘要

The rostral ventrolateral medulla (RVLM) maintains sympathetic nerve activity (SNA), and integrates adaptive reflexes. Orexin A-immunoreactive neurones in the lateral hypothalamus project to the RVLM. Microinjection of orexin A into RVLM increases blood pressure and heart rate. However, the expression of orexin receptors, and effects of orexin A in the RVLM on splanchnic SNA (sSNA), respiration and adaptive reflexes are unknown. The effect of orexin A on baseline cardio-respiratory variables as well as the somato-sympathetic, baroreceptor and chemoreceptor reflexes in RVLM were investigated in urethane-anaesthetized, vagotomized and artificially ventilated male Sprague-Dawley rats (n= 50). orexin A and its receptors were detected with fluorescence immunohistochemistry. Tyrosine hydroxylase-immunoreactive neurones in the RVLM were frequently co-localized with orexin 1 (OX(1) ) and orexin 2 (OX(2) ) receptors and closely apposed to orexin A-immunoreactive terminals. Orexin A injected into the RVLM was pressor and sympatho-excitatory. Peak effects were observed at 50 pmol with increased mean arterial pressure (42 mmHg) and SNA (45%). Responses to orexin A (50 pmol) were attenuated by the OX(1) receptor antagonist, SB334867, and reproduced by the OX(2) receptor agonist, [Ala(11) , D-Leu(15) ]orexin B. Orexin A attenuated the somato-sympathetic reflex but increased baroreflex sensitivity. Orexin A increased or reduced sympatho-excitation following hypoxia or hypercapnia respectively. Although central cardio-respiratory control mechanisms at rest do not rely on orexin, responses to adaptive stimuli are dramatically affected by the functional state of orexin receptors.