跳转至内容
Merck
  • Inhibition of EHMT2/G9a epigenetically increases the transcription of Beclin-1 via an increase in ROS and activation of NF-κB.

Inhibition of EHMT2/G9a epigenetically increases the transcription of Beclin-1 via an increase in ROS and activation of NF-κB.

Oncotarget (2016-10-26)
Sang Eun Park, Hye Jin Yi, Nayoung Suh, Yun-Yong Park, Jae-Young Koh, Seong-Yun Jeong, Dong-Hyung Cho, Choung-Soo Kim, Jung Jin Hwang
摘要

We previously reported that BIX-01294 (BIX), a small molecular inhibitor of euchromatic histone-lysine N-methyltransferase 2 (EHMT2/G9a), induces reactive oxygen species (ROS)-dependent autophagy in MCF-7 cells. Herein, we analyzed the epigenetic mechanism that regulates the transcription of Beclin-1, a tumor suppressor and an autophagy-related gene (ATG). Inhibition of EHMT2 reduced dimethylation of lysine 9 on histone H3 (H3K9me2) and dissociated EHMT2 and H3K9me2 from the promoter of Beclin-1. To this promoter, RNA polymerase II and nuclear factor kappa B (NF-κB) were recruited in a ROS-dependent manner, resulting in transcriptional activation. Moreover, treatment with BIX reversed the suppression of Beclin-1 by the cooperative action of EHMT2 and DNA methyltransferase 1 (DNMT1). Accordingly, a combination treatment with BIX and 5-Aza-2'-deoxycytidine (5-Aza-Cd), a DNMT1 inhibitor, exerted a synergistic effect on Beclin-1 expression. Importantly, high levels of EHMT2 expression showed a significant association with low levels of Beclin-1 expression, which was related to a poor prognosis. These findings suggest that EHMT2 can directly repress Beclin-1 and that the inhibition of EHMT2 may be a useful therapeutic approach for cancer prevention by activating autophagy.

材料
货号
品牌
产品描述

Sigma-Aldrich
抗RNA聚合酶II抗体,克隆CTD4H8, clone CTD4H8, Upstate®, from mouse