跳转至内容
Merck
  • Non-cytotoxic hydroxyl-functionalized exfoliated boron nitride nanoflakes impair the immunological function of insect haemocytes in vivo.

Non-cytotoxic hydroxyl-functionalized exfoliated boron nitride nanoflakes impair the immunological function of insect haemocytes in vivo.

Scientific reports (2019-10-03)
Elżbieta Czarniewska, Lucyna Mrówczyńska, Magdalena Jędrzejczak-Silicka, Patryk Nowicki, Martyna Trukawka, Ewa Mijowska
摘要

To induce the water solubility of hexagonal boron nitride (h-BN), we exfoliated and functionalized bulk h-BN with hydroxyl groups (h-BN-OH-n). Short-term studies showed that h-BN-OH-n induced low cytotoxicity in different models: insect haemocytes (in vivo), human erythrocytes and mouse fibroblasts (in vitro). We also demonstrated that Alexa Fluor 647-h-BN-OH-n administered topically to the insects passed through the cuticle barrier and was phagocytosed by haemocytes. Nanoflakes did not affect the haemocyte cell membrane and did not interfere with the phagocytosis of latex beads. Long-term immunoassays showed that h-BN-OH-n, despite not inducing haemocytotoxicity, impaired nodulation, the most important cellular immune response in insects. The haemocytes exposed to h-BN-OH-n and then to bacteria differed in morphology and adhesiveness from the haemocytes exposed only to bacteria and exhibited the same morphology and adhesiveness as the control haemocytes. The h-BN-OH-n-induced decrease in nodulation can therefore result from the reduced ability of haemocytes to recognize bacteria, migrate to them or form microaggregates around them, which can lead to dysfunction of the immune system during pathogen infection. Long-term in vivo studies with animal models are still necessary to unambiguously confirm that h-BN is biocompatible and useful for application as a platform for drug delivery or for bioimaging.

材料
货号
品牌
产品描述

Sigma-Aldrich
2',7'-二氯荧光素二乙酸酯, ≥97%
Sigma-Aldrich
Staphylococcus aureus, buffered aqueous suspension, Wood 46 strain
Sigma-Aldrich
(酪氨酸[SO3H]27)胆囊收缩素片段26-33酰胺, ≥97% (HPLC), powder