跳转至内容
Merck
  • Connexin 26 and 43 play a role in regulating proinflammatory events in the epidermis.

Connexin 26 and 43 play a role in regulating proinflammatory events in the epidermis.

Journal of cellular physiology (2019-02-03)
Laura García-Vega, Erin M O'Shaughnessy, Afnan Jan, Chris Bartholomew, Patricia E Martin
摘要

Dysregulation of Connexin (CX) expression and function is associated with a range of chronic inflammatory conditions including psoriasis and nonhealing wounds. To mimic a proinflammatory environment, HaCaT cells, a model human keratinocyte cell line, were challenged with 10 µg/ml peptidoglycan (PGN) isolated from Staphylococcus aureus for 15 min to 24 hr in the presence or absence of CX blockers and/or following CX26, CX43, PANX1 and TLR2 small interfering RNA (siRNA) knockdown (KD). Expression levels of IL-6, IL-8, CX26, CX43, PANX1, TLR2 and Ki67 were assessed by quantitative real-time polymerase chain reaction, western blot analysis and/or immunocytochemistry. Nuclear factor kappa β (NF-κβ) was blocked with BAY 11-7082, CX-channel function was determined by adenosine 5'-triphosphate (ATP) release assays. Enzyme-linked immunosorbent assay monitored IL6 release following PGN challenge in the presence or absence of siRNA or blockers of CX or purinergic signalling. Exposure to PGN induced IL-6, IL-8, CX26 and TLR2 gene expression but it did not influence CX43, PANX1 or Ki67 messenger RNA expression levels. CX43 protein levels were reduced following 24 hr PGN exposure. PGN-induced CX26 and IL-6 expression were also aborted by TLR2-KD and inhibition of NF-κβ. ATP and IL-6 release were stimulated following 15 min and 1-24 hr challenge with PGN, respectively. Release of both agents was inhibited by coincubation with CX-channel blockers, CX26-, CX43- and TLR2-KD. The IL-6 response was also reduced by purinergic blockers. CX-signalling plays a role in the innate immune response in the epidermis. PGN is detected by TLR2, which via NF-κβ, directly activates CX26 and IL-6 expression. CX43 and CX26 maintain proinflammatory signalling by permitting ATP release, however, PANX1 does not participate.