跳转至内容
Merck
  • Circular dichroism and crosslinking studies of the interaction between four neurotrophins and the extracellular domain of the low-affinity neurotrophin receptor.

Circular dichroism and crosslinking studies of the interaction between four neurotrophins and the extracellular domain of the low-affinity neurotrophin receptor.

Protein science : a publication of the Protein Society (1994-03-01)
D E Timm, A H Ross, K E Neet
摘要

Interactions between the purified recombinant receptor extracellular domain (RED) of the human low-affinity neurotrophin receptor (LANR) and recombinant human brain-derived neurotrophic factor, neurotrophin-3 (NT-3) and neuotrophin-4/5 have been studied by chemical crosslinking and circular dichroism. Conformational changes subsequent to binding have been shown by these procedures. First, relative affinities of the neurotrophins for RED were determined by binding competition assays in which radioiodinated nerve growth factor (NGF) from mouse submaxillary gland was crosslinked to RED in the presence of varying amounts of unlabeled neurotrophin competitors. RED bound each of the 3 recombinant human neurotrophins with affinities that were indistinguishable from authentic mouse NGF. These results are the first measurement of binding of the neurotrophin family to their common receptor using purified components. In order to study the effect of binding on the conformation of the proteins, CD measurements were made before and after mixing neurotrophins and RED, as had previously been done with NGF and RED (Timm DE, Vissavajjhala P, Ross AH, Neet KE, 1992, Protein Sci 1:1023-1031). Similar changes in CD spectra occurred upon combination of each of the neurotrophins and RED, with negative changes near 220-225 nm and positive changes near 190-200 nm; however, significant differences existed among the various neurotrophin-RED difference spectra. The NT-3/RED complex showed the largest spectral change and NGF the smallest. Thus, specific conformational changes in secondary structure of neurotrophin, RED, or both accompany the binding of each neurotrophin to the extracellular domain of the LANR.