Skip to Content
Merck
  • Rheological profiling of organogels prepared at critical gelling concentrations of natural waxes in a triacylglycerol solvent.

Rheological profiling of organogels prepared at critical gelling concentrations of natural waxes in a triacylglycerol solvent.

Journal of agricultural and food chemistry (2015-05-02)
Ashok R Patel, Mehrnoosh Babaahmadi, Ans Lesaffer, Koen Dewettinck
ABSTRACT

The aim of this study was to use a detailed rheological characterization to gain new insights into the gelation behavior of natural waxes. To make a comprehensive case, six natural waxes (differing in the relative proportion of chemical components: hydrocarbons, fatty alcohols, fatty acids, and wax esters) were selected as organogelators to gel high-oleic sunflower oil. Flow and dynamic rheological properties of organogels prepared at critical gelling concentrations (Cg) of waxes were studied and compared using drag (stress ramp and steady flow) and oscillatory shear (stress and frequency sweeps) tests. Although, none of the organogels satisfied the rheological definition of a "strong gel" (G″/G' (ω) ≤ 0.1), on comparing the samples, the strongest gel (highest critical stress and dynamic, apparent, and static yield stresses) was obtained not with wax containing the highest proportion of wax esters alone (sunflower wax, SFW) but with wax containing wax esters along with a higher proportion of fatty alcohols (carnauba wax, CRW) although at a comparatively higher Cg (4%wt for latter compared to 0.5%wt for former). As expected, gel formation by waxes containing a high proportion of lower melting fatty acids (berry, BW, and fruit wax, FW) required a comparatively higher Cg (6 and 7%wt, respectively), and in addition, these gels showed the lowest values for plateau elastic modulus (G'LVR) and a prominent crossover point at higher frequency. The gelation temperatures (TG'=G″) for all the studied gels were lower than room temperature, except for SFW and CRW. The yielding-type behavior of gels was evident, with most gels showing strong shear sensitivity and a weak thixotropic recovery. The rheological behavior was combined with the results of thermal analysis and microstructure studies (optical, polarized, and cryo-scanning electron microscopy) to explain the gelation properties of these waxes.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
1-Butanol, for molecular biology, ≥99%
Sigma-Aldrich
Undecane, ≥99%
Sigma-Aldrich
1-Butanol, anhydrous, 99.8%
Sigma-Aldrich
Undecane, ≥99%
Sigma-Aldrich
1-Butanol, 99%
Sigma-Aldrich
Butyl alcohol, natural, ≥99.5%, FCC, FG
Sigma-Aldrich
Azobenzene, 98%
Sigma-Aldrich
Potassium hydroxide, anhydrous, ≥99.95% trace metals basis